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Abstract 

 

Recently, many mathematics educators have tried to explore the potential for aspects of 

abstract algebra to improve the teaching of high school algebra.  As a high school math teacher, I 

am specifically interested in how I can tie the ring theory in abstract algebra into a high school 

level algebra course. More precisely, this thesis concerns the possible application of the 

irreducibility of polynomials (with integer coefficients over rational field ℚ) in high school 

algebra. We will explore the differences between a reducible polynomial and an irreducible 

polynomial. In detail, concepts such as the following will be explored and addressed: the 

comparison of the ring of integers and the rings of polynomials over ℚ (or ℝ), including the 

Division Theorem, Fundamental Theorem of Arithmetic, Factorization Theorem for 

Polynomials, and long division. Secondly, we will discuss how to verify a polynomial with 

integer coefficients is irreducible over ℚ, such as Eisenstein’s Criterion.  In the final section, we 

will include several strategies and lesson proposals to introduce these topics at a secondary level 

tied in with appropriate common core state standards.  
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Chapter 1. The Division Theorem 

1.1 The Division Theorem and its proof 

It is not uncommon for a mathematics teacher to cope with uncertainty and reduce 

anxiety among many students in a high school classroom. Based on experience and outside 

conversation, I have built a beginning of an understanding of the fright students feel when they 

struggle to understand curriculum in their high school math classrooms. After several 

conversations with students, I have found that my desired goal with my thesis is to further 

explore several topics that involve higher level mathematics, and can be introduced to students in 

a classroom. According to a Scholastic article for parents entitled “Using the Rules of 

Divisibility Effectively”, “3rd grade is when the concept of multiplication and division is taught, 

and 4th grade is when students learn about factors/multiples and prime/composite numbers. They 

will use this language through high school, so it’s important they feel comfortable with them” 

(Scholastic, 2014). If topics of division and factors are discussed beginning at a 3rd or 4th grade 

level, why do we not work to introduce theorems such as the Division Theorem to students at a 

high school level, in such a way that could be useful to their understanding of division, factors, 

and remainders? Using several examples and representations of the division theorem, I will work 

to present it in a way that may be accessible to high school students.  

Theorem 1.1.1 (Division Theorem). If 𝑛 is any integer and 𝑑 is a positive integer, then there 

exist unique integers 𝑞 and 𝑟 such that 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑑.  

Proof. There are two steps:  

(1) Prove that there are integers 𝑞 and 𝑟 such that 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑑. 

(2) Prove that 𝑞 and 𝑟 are unique.  
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Let 𝑎, 𝑏 ∈  ℤ and 𝑏 ≠ 0. Then there is the set of numbers, 𝑐 ∈ ℕ, defined to be 𝑆 =

{𝑐 = 𝑛 − 𝑑𝑥 ≥ 0, 𝑥 ∈ ℤ}. Now, we will show that there are elements in the set 𝑆.  

There are three cases should be considered here: 𝑛 > 0, 𝑛 < 0, and 𝑛 = 0. 

(i) For 𝑛 > 0 and 𝑛 = 0, consider 𝑛 − 𝑑(0) = 𝑛 ≥ 0. Therefore, for this case (when 𝑛 ≥ 0), 𝑐 =

𝑛 − 𝑑(0) = 𝑛 is an element in the set 𝑆.  

(ii) Secondly, we need to show that when 𝑛 is negative, the set also contains elements. With 𝑛 

being a negative integer and 𝑑 being a positive integer, which means 𝑑 ≥ 1. 

For 𝑑 ≥ 1, multiplying – 𝑛 on both sides yields −𝑛𝑑 ≥ −𝑛. Adding 𝑛 to both sides, 𝑛 − 𝑛𝑑 ≥

0 and 𝑛 − 𝑛𝑑 is an element of set 𝑆. 

Therefore, the set is non-empty for all cases.  

The Well-Ordering Axiom will also need to be considered. The Well Ordering Axiom states: any 

nonempty subset of nonnegative integers has a least element. 

Letting 𝑟 represent the smallest element of the set S, where 𝑟 = 𝑛 − 𝑑𝑥, such that, when 𝑥 = 𝑞, 

𝑟 = 𝑛 − 𝑑𝑞, in other words, 𝑛 = 𝑑𝑞 + 𝑟. 

Since 𝑟 is in the set we denoted above, 𝑟 ≥ 0. To prove the first part of the inequality, we must 

show that 𝑟 < 𝑑. 

This will be shown through a proof by contradiction. Assume the opposite, such that, 𝑟 ≥ 𝑑. 

Moving the 𝑑 to the left by subtraction, 𝑟 − 𝑑 ≥ 0. 

Therefore, 𝑟 − 𝑑 = 𝑛 − 𝑑𝑞 − 𝑑 = 𝑛 − 𝑑(𝑞 + 1). 
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Considering the final equivalent statement, 𝑛 − 𝑑(𝑞 + 1),  this is an element of the set S since 

𝑛 − 𝑑(𝑞 + 1) = 𝑟 − 𝑑 ≥ 0. Since 𝑑 is positive, it can be concluded that that 𝑟 − 𝑑 < 𝑟. 

Therefore, 0 ≤ 𝑟 − 𝑑 = (𝑛 − 𝑑𝑞) − 𝑑 = 𝑛 − 𝑑(𝑞 + 1) < 𝑟. This shows there exists another 

element that would be smaller than 𝑟, in the set S, which would contradict the assumption that 𝑟 

is the least element in S. By contradiction, 𝑟 < 𝑑. 

Lastly, a proof to show 𝑞 and 𝑟 are unique.  

Let 𝑟1, 𝑟2, 𝑞1, 𝑞2 be integers, and 𝑑𝑞1 + 𝑟1 = 𝑛 = 𝑑𝑞2 + 𝑟2, where the property proved above 

holds for 𝑟1 and 𝑟2,  such that 0 ≤ 𝑟1 < 𝑑 and 0 ≤ 𝑟2 < 𝑑. 

Now, show that 𝑟1 𝑎𝑛𝑑 𝑟2 are the same and 𝑞1 𝑎𝑛𝑑 𝑞2 are the same.  

Suppose that 𝑟2 ≥ 𝑟1. As stated above 𝑑𝑞1 + 𝑟1 = 𝑛 = 𝑑𝑞2 + 𝑟2, therefore, 0 =  𝑑𝑞1 + 𝑟1 −

𝑑𝑞2 − 𝑟2. 

Factoring out 𝑑 and −1, yields 𝑑(𝑞1 − 𝑞2) − (𝑟2 − 𝑟1) = 0, or in other words, 𝑑(𝑞1 − 𝑞2) =

𝑟2 − 𝑟1. 

Since 𝑟2 ≥ 𝑟1, the quantity 𝑑(𝑞1 − 𝑞2) is not negative. But, since 0 ≤ 𝑟1 ≤ 𝑟2 < 𝑑, if 𝑟1 < 𝑟2, 

then 𝑑 > 𝑟2 − 𝑟1 > 0, so 𝑑(𝑞1 − 𝑞2) > 0. But 𝑑(𝑞1 − 𝑞2) ≥ 𝑑, and 𝑑(𝑞1 − 𝑞2) = 𝑟2 − 𝑟1 cannot 

be true, which is a contradiction. So 𝑟2 = 𝑟1 or 𝑟2 − 𝑟1 = 0. 

Knowing that 0 = 𝑑(𝑞1 − 𝑞2) − (𝑟2 − 𝑟1), and (𝑟2 − 𝑟1) is equal to 0, by substitution we have 

0 = 𝑑(𝑞1 − 𝑞2) − 0, then the quantity 𝑞1 − 𝑞2 must also be equal to 0. 

In conclusion, we have proved both statements as desired: (1) There are integers 𝑞 and 𝑟 such 

that 𝑛 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑑.  (2) 𝑞 and 𝑟 are unique. 
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Now the proof is complete. I would like to discuss its conceptual understanding in a way that 

could be graspable for students in a high school classroom.  

There are several steps and details from the proof we would address to students without 

overwhelming them with the tedious steps that may be too difficult for them.  

1.2 Conceptual Understanding of the Division Theorem 

Although a proof provides a detailed outline of the reasoning for a mathematical finding, 

this type of approach to a high school classroom probably would not fit as most effective. An 

approach involving arguments and examples that students can understand would be beneficial for 

teachers to introduce in high school classrooms. This method of examples and various 

representations to give a friendly and approachable introduction for students. 

To introduce the Division Theorem in a high school classroom, the concept of greatest 

common divisor (gcd) could be considered. The gcd is one of the topics covered in a middle 

school and high school curriculum. The following examples are direct applications of the gcd 

using the Division Theorem.  

Definition. A positive integer, 𝑑, is the greatest common divisor of integers 𝑎 and 𝑏 if 𝑑 is a 

common divisor of 𝑎 and 𝑏 and not less than any other common divisor of 𝑎 and 𝑏.  

Euclid’s Algorithm. Let 𝑎, 𝑏 ∈ ℕ, 𝑎 > 𝑏. By division theorem, there are unique integers 𝑞 and 𝑟 

such that 𝑎 = 𝑏𝑞 + 𝑟, where 0 ≤ 𝑟 < 𝑏. If 𝑟 = 0, we stop. If 𝑟 is not zero, we apply the division 

theorem to 𝑏 and 𝑟. We repeatedly use division theorem until we receive the remainder 0. This 

method to find the great common divisor is called the Euclid’s Algorithm.  

Example 1.2.1. Find the gcd between 58 and 16 
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Using the Division Theorem, 58 can be written as: 58 = 16 ⋅ 𝑞 + 𝑟, where 0 ≤ 𝑟 < 16. Dividing 

58 by 16, the quotient is 3 and the remainder 10, such that 58 = 16 ⋅ 3 + 10, where 0 ≤ 10 <

16. Notice, by subtracting 16 ⋅ 3 on both sides, 58 − 16 ⋅ 3 = 10. Therefore, the gcd divides 

58,16 and 10. It implies that the gcd is a common divisor of 16 and 10. Not only is it a common 

divisor, but it is the great common divisor because if there were a divisor greater than 𝑑, then this 

number would also divide 58 and then 𝑑 would not have been the gcd between 58 and 16.  

Therefore, since any number that divides 16 and 10, also divides 58, we can say gcd(58,16) =

gcd(16,10). Applying the division algorithm again for 16, there is a unique 𝑞 and 𝑟 such that 

16 = 10 ⋅ 1 + 6. Similarly, as above, any number that divides 10 and 16 must also divide 6 

because it can be rewritten as  16 − 10 ⋅ 1 = 6. Therefore, gcd(16,10) = gcd(10,6). Applying 

the division algorithm again, 10 = 6 ⋅ 1 + 4, such that gcd(10,6) = gcd(6,4). Applying the 

division algorithm one last time, 6 = 4 ⋅ 1 + 2. Thus, the gcd(6,4) = gcd(4,2). Applying the 

theorem again, 2 is prime so it will not have any other greatest common divisor. Therefore, 

gcd(4,2) = 2.  

The concept of gcd will be addressed in the chapters to follow, applying it to polynomials 

rather than integers, which will build upon the extension of these division theorems, as possible 

applications in a high school curriculum.  

1.3 Applying the Division Theorem to Even and Odd Integers 

Another application of the division theorem could be to discuss the difference between 

even and odd integers. One can show that every integer is either even or odd but never both.  

Before the proof, it is important to discuss the relevance of this topic in a high school 

mathematics classroom. I have found that students have an instilled fear of explanation in math 
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classes. Some of the fear comes from the following types of questions: “Can you explain your 

work, how did you get your solution, describe your steps and why you took them”. Students 

freeze up oftentimes because they have a fear of approaching questions that require problem 

solving and do not have a clear solving approach. Additionally, their approach may be to guess 

the answer without analyzing, reasoning or deducting logically. (Not all students of course, I am 

speaking from previous experience as a student for 18 years and a teacher for 2). I want to take 

this example and focus more on reaction and thoughts of a student working through it, then 

focusing on the heavy mathematical content that can come behind it. To recall, we use this 

Division Theorem to prove the following statement, “every integer is even or odd, but not both”. 

We consider this problem from the lens of a freshman in high school. There are no strange 

expressions or complicated derivations of numbers that could look intimidating to students aged 

14-years-old. One could recognize and understand the word integer, even, and odd. Now, we will 

use the Division Theorem to prove the claim.  

Lemma 1.3.1. Let 𝑖 represent this integer. Then, 𝑖 = 2𝑞 + 𝑟, where 𝑞 and 𝑟 are integers and 0 ≤

𝑟 < 2.  

Even: The set of even numbers, 𝑆 = {2𝑘, 𝑘 ∈ ℤ}, where ℤ is the set of integers.  

Odd: The set of odd numbers, 𝑇 = {2𝑘 + 1, 𝑘 ∈  ℤ}, where ℤ is the set of integers. 

When the least nonnegative remainder of an integer divided by 2 is zero, the number is even, and 

it will follow that 𝑖 = 2𝑞 from the Division Theorem. By the Division Theorem, for any integer 

𝑛, there are two unique integers 𝑞 and 𝑟 such that 𝑛 = 2𝑞 + 𝑟, where 0 ≤ 𝑟 < 2. So 𝑟 is either 0 

or 1. If 𝑟 is not 0, then 𝑟 = 1 and 𝑛 = 2𝑞 + 1 is odd. This shows that an integer is either odd or 

even. 
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Now, the only part students might struggle with more as a teenage is finishing up by 

explaining why it is not possible for it to be both. Since we want to prove it cannot be both, we 

may assume it can be both and see what happens. Consider integer 𝑞1 and 𝑞2, where 𝑖 = 2𝑞1 and 

𝑖 = 2𝑞2 + 1. Then 𝑖 = 2𝑞1 = 2𝑞2 + 1 or 2(𝑞1 − 𝑞2) = 1.We know that this is not possible, 

because in the equation 2(𝑞1 − 𝑞2) = 1 the absolute value of the left side is either 0 when 𝑞1 =

𝑞2 or greater than 2 if 𝑞1 ≠ 𝑞2, but the right side is 1. Therefore, an integer cannot be both even 

and odd. 

Being able to follow along a proof from the perspective of a high school student made me 

feel connected to a K-12 setting in this higher level of mathematics presented in this chapter. It 

opened the doors to being able to further explore division and factors in a high school setting 

using advanced theorems and corollaries. Moving forward, we will further make deeper 

connections to a high school classroom using the Fundamental Theorem of Arithmetic. 
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Chapter 2. The Fundamental Theorem of Arithmetic 

After discussing the Division Theorem, Euclid’s Algorithm, and properties of even and 

odd numbers, we will continue to build an understanding of what it means for a polynomial to be 

irreducible and reducible by diving into divisibility, prime and composite numbers, prime 

factorization, and the Fundamental Theorem of Arithmetic.  

2.1 Divisibility 

This section begins with discussing the divisibility of numbers, what it means for one 

number to be divisible by another, and how this allows us to determine the difference between 

prime and composite numbers and their applications.  

Definition 2.1.1: An integer 𝑛 is divisible by a nonzero integer 𝑚 if there is an integer 𝑘 such 

that 𝑛 = 𝑚 ⋅ 𝑘.  

The concept of divisibility is taught beginning in 4th and 5th grade, i.e., 15 is divisible by 

5, 70 is divisible by 10, 35 is divisible by 7, and so forth, and builds the foundation of more 

complex corollaries and theorems they will learn later. Having been taught at a young age, 

students can quickly build an understanding of divisibility and the other applications that stem 

from it. Now, to introduce the concept of a divisor. 𝑚 is a divisor of 𝑛 if 𝑛 is divisible by 𝑚. 

Another term to consider here is a factor. We will discuss the prime factorization in the 

following section. If  𝑚 is a divisor of 𝑛, 𝑛 is divisible by 𝑚, and 𝑚 is a factor of 𝑛. Additionally, 

1 divides any integer and any nonzero 𝑛 divides itself. 

Definition 2.1.2. An integer 𝑚 is a proper divisor of 𝑛 if 𝑚 is a divsor of 𝑛, 𝑚 ≠ 1, 𝑚 ≠

−1 , 𝑚 ≠ 𝑛, 𝑎𝑛𝑑 𝑚 ≠ −𝑛.  

Note: In this case it is stated that 𝑚 is a proper factor of 𝑛.  
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Example 2.1.1. Consider the example for 3, 5, 𝑎𝑛𝑑 15. It is correct to say that 3 is a proper 

divisor of 15, 5 is a proper divisor of 15, and both 3 and 5 are proper divisors of 15.  

Example 2.1.2. Asking students the following question: is it correct to say that every nonzero 

integer divides 0? Let us show it to be true. To build up the conceptual understanding, we first 

choose a number, say 3, to verify if it is correct. Because 3 ⋅ 0 = 0, we see that 3 divides 0 by 

definition. Similarly, for any nonzero integer 𝑛, 𝑛 ⋅ 0 = 0, therefore 𝑛 divides 0.  

Example 2.1.3. List all positive divisors of 52. The students will begin by listing all numbers 

that 52 can be divided by: 1, 2, 4, 13, 26, 52. Those are all positive divisors of 52.  

Lastly, to conclude the discussion on divisors and proper divisors, a connection between 

what we have been talking about with divisors to the definition of a prime number. One way to 

define a prime number is by saying that a prime number is an integer 𝑝 > 1 that has no proper 

divisors. In Example 2.1.3, the prime divisors are 2 and 13.  

2.2 Primes and Prime Factorization 

Drawing from the Division Theorem studied above, the Fundamental Theorem of 

Arithmetic and its connections and applications can be studied in a high school mathematics 

classroom.  

The Fundamental Theorem of Arithmetic states that each positive integer (not including 1), can 

be represented as a product of one or more prime numbers. Furthermore, this factorization is 

unique, apart from the order in which the prime factors are listed.  

Before the proof of the Fundamental Theorem of Arithmetic, one must describe primes, 

prime factorization, and show several examples. The topic of prime numbers is very applicable 
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and reasonable to introduce in a high school classroom when teaching factoring strategies and 

several other algebra topics. Understanding the value of learning about prime numbers may 

encourage students to study the topic with excitement and an open mind. One main application 

of prime numbers that may draw relevance in the life of students is the study of cryptography 

and its application to the changing technology around us. The cyber world we live in highly 

relies on cryptographic algorithms for its security, including the execution of activities we 

perform on a daily basis: withdrawing cash safely from an ATM, paying TV programs, email 

security, secure web browsing, and so forth. Alongside cryptography, there are several other 

applications for students to explore. “Some applications are industrial – such as applications in 

numerical analysis, applied mathematics and other applied sciences – while some are of the 

‘conceptual feedback’ variety, in which primes and their surrounding concepts are used in 

theoretical work outside of, say, pure number theory” (Crandall, 2001).   

Dividing the set of positive integers that are greater than 1 into two distinct sets, the set of 

prime numbers that only contain factors 1 and itself, and the set of composite numbers that have 

proper factors. Consider the integer 72. We can break down 72 as 9 ⋅ 8, then break down each of 

those numbers further having that there are both composite, such as: 9 = 3 ⋅ 3 and 8 = 4 ⋅ 2. 

Having that 4 is composite, it can break down further such that 4 = 2 ⋅ 2. This leaves the 

following factors: 72 = 3 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 2. Condensing the factors, the factorization of 72 is: 72 =

32 ⋅ 23. Consider two different factors of 72 to study the uniqueness of prime factorization, 

before it is proven to be true. We can break down 72 as 36 ⋅ 2. Breaking down 36 further, such 

that: 36 = 6 ⋅ 6. Finally break the 6′𝑠 apart further such that = 3 ⋅ 2. We are left with the 

following factors: 72 = 3 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 2. Condensing the factors, the factorization of 72 as 

follows: 7 = 32 ⋅ 23. There is another representation that can be used to show factorization, 
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known as a factor tree, which can be very approachable to a high school student. A display of a 

factor is shown below for the example provided.  

Figure 2.1: Prime Factorization of 72 

 

 

Let us now prove that every number is either prime or composite but not both. We will also 

prove that prime factorization is unique. This will allow students to build up to the understanding 

of the Fundamental Theorem of Arithmetic, its proof, and its applications to the world around us.  

2.3 Fundamental Theorem of Arithmetic  

Before the proof of the Fundamental Theorem of Arithmetic, for two integers 𝑎 and 𝑏, we define 

(𝑎, 𝑏) to be the greatest common divisor of 𝑎 and 𝑏. 

We say that 𝑎 and 𝑏 are relatively prime or coprime if (𝑎, 𝑏) = 1, that is, they share no common 

positive divisors (or factors) except 1.  

Theorem 2.3.2. (Bezout’s Identity).  Let 𝑎, 𝑏 ∈ ℤ. If 𝑑 is the greatest common divisor of 𝑎 and 

𝑏, there are integers 𝑥 and 𝑦, such that 𝑎𝑥 + 𝑏𝑦 = 𝑑.   
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Example 2.2.1. Find the greatest common divisor 𝑑 of 𝑎 = 9 and 𝑏 = 12, and show with 

Bezout’s Identity that for some integers 𝑥 and 𝑦, 𝑑 = 𝑎𝑥 + 𝑏𝑦.   

Applying the Division Theorem, 12 = 9 ∙ 1 + 3. Therefore gcd(9,12) = gcd (9,3) using 

Euclid’s Algorithm. Since 3 is prime, the gcd(9,3) = 3. Therefore, 𝑑 = 3. Using Bezout’s 

identity, for 𝑑 = 𝑎𝑥 + 𝑏𝑦, where 𝑑 = 3, 𝑎 = 9, 𝑏 = 12, 3 = 9 ⋅ 𝑥 + 12 ⋅ 𝑦. By the equation 

12 = 9 ⋅ 1 + 3, 3 = 12 − 9 = 9(−1) + 12(1). Therefore, 𝑑 = 3, 𝑥 =  −1 and 𝑦 = 1. 

Theorem 2.3.4 (Fundamental Theorem of Arithmetic). Each positive integer greater than 

1 can be represented as a product of one or more prime numbers.  

There are two lemmas needed to prove the Fundamental Theorem of Arithmetic: If 𝑎 and 𝑏 are 

integers, we write 𝑎|𝑏 if 𝑎 divides 𝑏. 

Lemma 2.3.1. 𝐼𝑓 𝑎|𝑏𝑐 and (𝑎, 𝑏) = 1, then 𝑎|𝑐. 

Proof. Since(𝑎, 𝑏) = 1, by Bezout’s Identity, for some integers, 𝑑 and 𝑒, 1 = 𝑑𝑎 + 𝑒𝑏, so 𝑐 =

𝑑𝑎𝑐 + 𝑒𝑏𝑐. From the given statement that 𝑎|𝑏𝑐, we can say that 𝑎|𝑑𝑎𝑐 and 𝑎|𝑒𝑏𝑐, therefore, 

𝑎|( 𝑑𝑎𝑐 + 𝑒𝑏𝑐) = 𝑐, as desired. 

The following Lemma is known as Euclid’s Lemma. 

Lemma 2.3.2. If 𝑝 is a prime and 𝑝|𝑎1 𝑎2𝑎3 … 𝑎𝑛, then 𝑝|𝑎𝑖 for some 𝑖.  

Proof. The following is a proof by induction. Consider 𝑛 = 2, for 𝑎1 and 𝑎2. Suppose that 

𝑝|𝑎1𝑎2. Therefore, either 𝑝|𝑎1 or 𝑝 ∤ 𝑎1. If 𝑝|𝑎1 then the claim holds true when 𝑛 = 2. On the 

contrary, if 𝑝 ∤ 𝑎1, 𝑝|𝑎2. This is shown to be true by the lemma proved above. Assume 𝑛 = 𝑘, if 

𝑝|𝑎1𝑎2𝑎3 … 𝑎𝑘, then , 𝑝|𝑎𝑖 for some 𝑖. Now, consider the case 𝑛 = 𝑘 + 1, if 𝑝|𝑎1𝑎2𝑎3 … 𝑎𝑘𝑎𝑘+1, 

then 𝑝|𝑎1(𝑎2𝑎3 … 𝑎𝑘𝑎𝑘+1). If 𝑝|𝑎1, then the claim is true, if 𝑝 ∤ 𝑎1, then by Lemma 2.3.1, 
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𝑝|(𝑎2𝑎3 … 𝑎𝑘𝑎𝑘+1). Here (𝑎2𝑎3 … 𝑎𝑘𝑎𝑘+1) is one integer, and there are 𝑘 factors in its product. 

By inductive assumption, 𝑝|𝑎𝑖 for some 𝑖 between 2 and 𝑘 + 1. By mathematical induction, we 

have shown that this lemma holds true for all 𝑛 > 1.  

Proof of the Fundamental Theorem of Arithmetic. There are two parts to prove in the 

Fundamental Theorem of Arithmetic. First, show that each positive integer (not including 1), can 

be represented as a product of one or more prime numbers. Secondly, prove the uniqueness part 

of the theorem. 

A proof by induction will be used to show that any integer that is greater than one can be written 

as a product of primes. Beginning with the case 𝑛 = 2, 2 is prime, therefore the claim holds true. 

Now consider any case where 𝑛 > 2, assuming that any other number less than 𝑛 can be factored 

into a product of primes. There are two possibilities: 𝑛 is either prime or composite. If 𝑛 is 

prime, then we are done. If 𝑛 is composite, it can be factored such that 𝑛 = 𝑎𝑏, under the 

conditions that 1 < 𝑎 and 𝑏 < 𝑛. By induction, we can make the claim that we can factor 𝑎 and 

𝑏 into primes. This proves the existence of factorization.  

Secondly, we will show the uniqueness of the Fundamental Theorem of Arithmetic. Let 

𝑎1, … , 𝑎𝑖 be distinct primes and 𝑏1, … , 𝑏𝑗  be distinct primes, such that 𝑎1
𝑐1…𝑎𝑖

𝑐𝑖 = 𝑏1
𝑑1…𝑏𝑗

𝑑𝑗 , 

where all exponents 𝑐1 to 𝑐𝑖 and 𝑑1 to 𝑑𝑗are natural numbers. Using the last lemma we proved: if 

𝑝 is a prime and 𝑝|𝑎1
𝑐1…𝑎𝑖

𝑐𝑖 then 𝑝|𝑎𝑖 for 𝑖. Since 𝑎1 divides the product 𝑏1
𝑑1 … 𝑏𝑗

𝑑𝑗 ,  by the 

same lemma stated above, 𝑎1 divides 𝑏𝑘 for some 𝑘 between 1 and 𝑗. By arranging the order, we 

may assume 𝑘 = 1 and 𝑎1|𝑏1. Since both 𝑎1 and 𝑏1 are prime, 𝑎1=𝑏1. Replacing 𝑏1 by 𝑎1 in the 

equation, it shows 𝑎1
𝑐1…𝑎𝑖

𝑐𝑖 = 𝑎1
𝑑1…𝑏𝑗

𝑑𝑗 . If 𝑐1 > 𝑑1, we can remove 𝑎1
𝑑1 from the right, such 

that 𝑎1
𝑐1−𝑑1…𝑎𝑖

𝑐𝑖 = 𝑏2
𝑑2…𝑏𝑗

𝑑𝑗 . We run into something unusual, something that is not possible. 
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This equation is absurd because 𝑎1 divides the left side, but it would not divide the right. 

Similarly, 𝑐1 < 𝑑1 is not possible. Therefore,  𝑐1 = 𝑑1 holds true. We show 𝑎2
𝑐2…𝑎𝑖

𝑐𝑖 =

𝑏2
𝑑2…𝑏𝑗

𝑑𝑗 . We continue to follow the same steps for each additional power and the same 

argument holds. Therefore, we have shown that each positive integer (not including 1), can be 

represented as a product of one or more prime numbers, and that they are unique.  
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Chapter 3. Factorization Theorem for Polynomials 

3.1 Remainder and Factor Theorems 

“Teaching that embraces productive struggle provides opportunities for students to delve 

deeply into relationships among mathematical ideas and to develop understanding that leads 

them to apply their learning to new problem solutions” (NCTM, 2014). In this main chapter of 

the paper, we will concentrate on the irreducibility of polynomials, using several factor theorems, 

and long division applications that one could introduce in a high school classroom. The first two 

chapters discussed the division theorem for integers and factorization of integers, which are 

topics that can be introduced at a high school level. In this section we will extend the concept of 

divisibility and factorization to polynomials over the rational field ℚ. The first concept we will 

introduce is an irreducible polynomial, then the Division Theorems for polynomials with rational 

(or real) coefficients will be discussed.   

Definition. (1) A polynomial is an expression of the form 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ +

𝑎𝑛𝑥𝑛, where the coefficients 𝑎0, 𝑎1, 𝑎2 … , 𝑎𝑛 are rational (or real) numbers and 𝑥 is called the 

indeterminate.  

(2) If 𝑎𝑛 ≠ 0, we say the degree of 𝑓(𝑥) is 𝑛. 

We define 𝑓(𝑥) and 𝑔(𝑥) to be equal if and only if the coefficients of each power of 𝑥 are equal. 

In other words, for 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚, 𝑓(𝑥) =

𝑔(𝑥) if and only if 𝑚 = 𝑛,  𝑎0 = 𝑏0, 𝑎1 = 𝑏1, … , 𝑎𝑛 = 𝑏𝑛, … , 𝑎𝑚 = 𝑏𝑚. 

We can also add and multiply polynomials. Let us define the operations: 

(1) Addition: If 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚, then 𝑓(𝑥) +

𝑔(𝑥) = (𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛) + (𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚). If 𝑚 > 𝑛, we can combine the 
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terms such that 𝑓(𝑥) + 𝑔(𝑥) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + ⋯ + (𝑎𝑛 + 𝑏𝑛)𝑥𝑛 + 𝑏𝑛+1𝑥𝑛+1 +

⋯ + 𝑏𝑚𝑥𝑚.   

(2) Multiplication: The multiplication of two polynomials is defined by the distributive law and 

addition formula as follows: 𝑓(𝑥) ⋅ 𝑔(𝑥) = (𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛)(𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑚𝑥𝑚) =

𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + ⋯ + 𝑎𝑛𝑏𝑚𝑥𝑛+𝑚. Additionally, if 𝑎𝑛𝑏𝑚 ≠ 0, then the leading 

coefficient of 𝑓(𝑥) ⋅ 𝑔(𝑥) is the product of the leading coefficients of 𝑓(𝑥) and 𝑔(𝑥). 

Definition. Let 𝐹 be one of the sets ℤ, ℚ, and ℝ. We define 𝐹[𝑥] to be the set of all polynomials 

with coefficients in the set F.  

Note: We will consider the set of polynomials with integer coefficients in ℚ[𝑥] and ℝ[𝑥]. 

Lemma 3.1.1. For all non-zero polynomials 𝑓(𝑥) and 𝑔(𝑥) with coefficients in ℝ, 

deg(𝑓(𝑥)𝑔(𝑥)) = deg(𝑓(𝑥)) + deg(𝑔(𝑥)).   

Note: If 𝑎 is not zero, then 𝑎 has no zero divisors, which means if 𝑏 ≠ 0, then 𝑎𝑏 ≠ 0. 

Additionally, the degree of a nonzero polynomial is greater than or equal to zero. 

Proof. Suppose 𝑓(𝑥), 𝑔(𝑥) ∈ ℝ[𝑥], with degrees 𝑛 and 𝑚, respectively. Let 𝑎𝑛 ≠ 0 be the 

leading coefficient of 𝑓(𝑥), and 𝑏𝑚 ≠ 0 the leading coefficient of  𝑔(𝑥). Then, by the product 

formula, 𝑎𝑛𝑏𝑚 ≠ 0 is the leading coefficient of 𝑓(𝑥)𝑔(𝑥). Thus 𝑓(𝑥)𝑔(𝑥) has degree 𝑛 + 𝑚 =

deg (𝑓(𝑥) + deg(𝑔(𝑥)). 

Note: By the product formula, if 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) and 𝑔(𝑥) and ℎ(𝑥) have positive degrees, 

then the degree of 𝑓(𝑥) is higher than the degrees of 𝑔(𝑥) and ℎ(𝑥). 
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Definition. Let 𝐹 be a subset in ℚ or ℝ and 𝐹[𝑥] be the set of all polynomials with coefficients 

in 𝐹. A polynomial 𝑓(𝑥) in 𝐹[𝑥] is said to be irreducible over 𝐹 if 𝑓(𝑥) is not a product of two 

polynomials 𝑔(𝑥) and ℎ(𝑥) in 𝐹[𝑥] with positive degrees. Otherwise, 𝑓(𝑥) is called reducible.  

Example 3.1.1. Consider the polynomial 𝑥2 − 2 ∈ ℚ[𝑥]. (We will be revisiting this example 

using a different corollary later in this chapter). We know that  𝑥2 − 2 has no roots over ℚ. The 

goal is to show that  𝑥2 − 2 is in fact irreducible. This can be done by showing that 𝑓(𝑥) is not a 

product of two polynomials 𝑔(𝑥) and ℎ(𝑥) in ℚ[𝑥] with positive degrees. A proof by 

contradiction will be used. If  𝑥2 − 2 is reducible, then the polynomial can be written as: 𝑥2 −

2 = 𝑔(𝑥)ℎ(𝑥),  where the degree of 𝑔(𝑥) and the degree of ℎ(𝑥) are less than two and greater 

than zero. The degree of 𝑥2 − 2 is two, therefore both 𝑔(𝑥) and ℎ(𝑥) have degree one. In ℚ, for 

this reason, 𝑥2 − 2 will have a rational zero. This is a contradiction, so 𝑥2 − 2 is irreducible.  

Let us explore further theorems involving the irreducibility of polynomials. Once these 

theorems and irreducibility are discussed, they can be later applied to an example of long 

division.  

Theorem 3.1.1. For any polynomial 𝑓(𝑥) of degree 𝑛 ≥ 1, there is a polynomial 𝑔(𝑥) of degree 

𝑛 − 1 and a constant 𝑟 such that: 𝑓(𝑥) = (𝑥 − 𝑎)𝑔(𝑥) + 𝑟, where 𝑎 ∈ ℚ, 𝑓(𝑥), 𝑔(𝑥) ∈ ℚ[𝑥]. 

Proof: Consider 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛−1𝑥𝑛−1. 

Then (𝑥 − 𝑎)𝑔(𝑥) + 𝑟 = (𝑥 − 𝑎)(𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛−1𝑥𝑛−1) + 𝑟. Multiplying this out, gives 

𝑏0𝑥 + 𝑏1𝑥2 + ⋯ + 𝑏𝑛−2𝑥𝑛−1 + 𝑏𝑛−1𝑥𝑛 + 𝑟 − 𝑎𝑏0 − 𝑎𝑏1𝑥 − ⋯ − 𝑎𝑏𝑛−1𝑥𝑛−1. Simplifying, 

yields 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑟 − 𝑎𝑏0 + (𝑏0 − 𝑎𝑏1)𝑥 + ⋯ + (𝑏𝑛−2 − 𝑎𝑏𝑛−1)𝑥𝑛−1 +

𝑏𝑛−1𝑥𝑛. Therefore, 𝑏𝑛−1 = 𝑎𝑛, 𝑎𝑛−1 = 𝑏𝑛−2 − 𝑎𝑏𝑛−1,  𝑎1 = 𝑏0 − 𝑎𝑏1, 𝑎0 = 𝑟 − 𝑎𝑏0. We 
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receive 𝑛 linear equations and 𝑛 unknowns: 𝑟, 𝑏0, … , 𝑏𝑛−1. By substitution, the linear system has 

a unique solution 𝑟, 𝑏0, … , 𝑏𝑛−1.  

In Theorem 3.1.1, 𝑓(𝑥) can be a polynomial of degree n with real coefficients and the number 𝑎 

could be a complex number. The linear equations may have complex coefficients and 𝑟 can be a 

complex number when 𝑎 is a complex number, and the proof still holds true. 

We will prove a theorem about the greatest common divisor of polynomials and provide an 

example.  

Definition. A polynomial 𝑗(𝑥) (of positive degree) divides a polynomial 𝑓(𝑥) if 𝑓(𝑥) =

𝑘(𝑥)𝑗(𝑥) for some polynomial 𝑘(𝑥). 

Definition. The greatest common divisor of two polynomials 𝑓(𝑥) and 𝑔(𝑥) is a polynomial 

𝑑(𝑥) of highest degree that divides both 𝑓(𝑥) and 𝑔(𝑥). Usually, it is assumed that the highest 

degree term of 𝑑(𝑥) has coefficient 1 (called a monic polynomial).  

Theorem 3.1.2. Let 𝑓(𝑥) and 𝑔(𝑥) be real polynomials with deg (𝑔(𝑥)) > 0, and suppose 

𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥). Then, gcd(𝑓(𝑥), 𝑔(𝑥)) = gcd(𝑔(𝑥), 𝑟(𝑥)). 

Proof. Suppose gcd(𝑓(𝑥), 𝑔(𝑥)) = 𝑑(𝑥). As defined above, the greatest common divisor 

divides both 𝑓(𝑥) and 𝑔(𝑥). Therefore,  𝑑(𝑥)|𝑔(𝑥) and 𝑑(𝑥)|𝑓(𝑥). Additionally, rearranging the 

polynomial equation such that 𝑟(𝑥) = 𝑓(𝑥) − 𝑞(𝑥)𝑔(𝑥),  then 𝑑(𝑥)|𝑟(𝑥).  Now, it remains to 

show that  for some polynomial ℎ(𝑥), if ℎ(𝑥)|𝑔(𝑥) and ℎ(𝑥)|𝑟(𝑥), then ℎ(𝑥)|𝑑(𝑥), and the 

proof is complete. Since 𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥), and ℎ(𝑥) divides both 𝑔(𝑥) and 𝑟(𝑥), then 

ℎ(𝑥)|𝑓(𝑥). Lastly, since ℎ(𝑥)|𝑔(𝑥) and ℎ(𝑥)|𝑓(𝑥), and gcd(𝑓(𝑥), 𝑔(𝑥)) = 𝑑(𝑥), ℎ(𝑥)|𝑑(𝑥), as 

desired. 
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We will illustrate Euclid’s Algorithm for polynomials to determine gcd(𝑓(𝑥), 𝑔(𝑥)).  

Similar to the Division Theorem for integers, the Division Theorem for polynomials with 

rational (or real coefficients) is: Given two polynomials 𝑓(𝑥), 𝑔(𝑥), with 𝑔(𝑥) ≠ 0, then 𝑓(𝑥) =

𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥), where 𝑞(𝑥), 𝑟(𝑥) ∈ ℚ[𝑥] and 𝑟(𝑥) = 0, or, deg 𝑟(𝑥) < deg 𝑔(𝑥). We proved 

the special case when 𝑔(𝑥) = 𝑥 − 𝑎.  

Applying the Division Algorithm for polynomials, such that 𝑓(𝑥) = 𝑞1(𝑥)𝑔(𝑥) + 𝑟1(𝑥) and 

deg(𝑟1(𝑥)) < deg (𝑔(𝑥)), using the theorem above, gcd(𝑓(𝑥), 𝑔(𝑥)) =

gcd(𝑔(𝑥), 𝑟1(𝑥)). When 𝑟1(𝑥) = 0, we stop. Otherwise, we continue to repeat the process with 

polynomials 𝑔(𝑥) and 𝑟1(𝑥) instead of polynomials 𝑓(𝑥) and 𝑔(𝑥). Repeating the process, 

𝑔(𝑥) = 𝑞2(𝑥)𝑟1(𝑥) + 𝑟2(𝑥) and deg(𝑟2(𝑥)) < deg (𝑟1(𝑥)), then gcd(𝑔(𝑥), 𝑟1(𝑥)) =

gcd (𝑟1(𝑥), 𝑟2(𝑥)). If 𝑟2(𝑥) = 0, we stop. Otherwise, we continue the process in the same 

manner until we get a zero remainder.  

Example 3.1.2. Determine the greatest common divisor of 𝑓(𝑥) = 𝑥6 + 2𝑥5 + 2𝑥4 − 3𝑥3 −

9𝑥2 − 9𝑥 − 5 and 𝑔(𝑥) = 𝑥4 − 𝑥2 − 2𝑥 − 1.  

First, we apply the Division Algorithm to 𝑓(𝑥) and 𝑔(𝑥), such that 𝑓(𝑥) = (𝑥2 + 2𝑥 +

3)𝑔(𝑥) + (𝑥3 − 𝑥2 − 𝑥 − 2). Continue the algorithm because the remainder is not 0. Now set 

𝑟1(𝑥) = 𝑥3 − 𝑥2 − 𝑥 − 2 and apply the Division Algorithm to 𝑔(𝑥) and 𝑟1(𝑥), 𝑔(𝑥) =

(𝑥 + 1)𝑟1(𝑥) + (𝑥2 + 𝑥 + 1). Now set 𝑟2(𝑥) = 𝑥2 + 𝑥 + 1 and apply the Division Algorithm to 

𝑟1(𝑥) and 𝑟2(𝑥), 𝑟1(𝑥) = (𝑥 − 2)𝑟2(𝑥) + 0. We get the zero remainder and stop. Therefore, 

using Euclid’s Algorithm, we found that gcd(𝑥6 + 2𝑥5 + 2𝑥4 − 3𝑥3 − 9𝑥2 − 9𝑥 − 5, 𝑥4 −

𝑥2 − 2𝑥 − 1) = 𝑥2 + 𝑥 + 1.  
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Theorem 3.1.3 (Remainder Theorem). For some polynomial 𝑝(𝑥) with degree at least 1 and 

real coefficients, and 𝑎 some real number, when 𝑝(𝑥) is divided by 𝑥 − 𝑎, 𝑝(𝑎) is the remainder. 

Proof. By the remark after Theorem 3.1.1, 𝑝(𝑥) = (𝑥 − 𝑎)𝑔(𝑥) + 𝑟, where 𝑔(𝑥) is a 

polynomial and 𝑟 is a constant (real number), which is either 0 or a nonzero number. By 

substitution, 𝑝(𝑎) = (𝑎 − 𝑎)𝑞(𝑎) + 𝑟 = 0 ⋅ 𝑞(𝑎) + 𝑟 = 𝑟. Therefore, 𝑟 = 𝑝(𝑎).  

Theorem 3.1.4 (Factor Theorem). A polynomial 𝑓(𝑥) in 𝐹[𝑥] has a zero 𝑐 in 𝐹, that is, 𝑓(𝑐) =

0, if and only if 𝑓(𝑥) = (𝑥 − 𝑐)𝑔(𝑥) for some polynomial 𝑔(𝑥) in 𝐹[𝑥], where 𝐹 is ℚ or ℝ. 

Proof. The Factor Theorem follows directly from the Remainder Theorem. If 𝑓(𝑥) has a factor 

(𝑥 − 𝑐), 𝑓(𝑥) = (𝑥 − 𝑐)𝑔(𝑥) for a polynomial 𝑔(𝑥).  Therefore, 𝑓(𝑐) = (𝑐 − 𝑐)𝑔(𝑐) =

0. Hence, 𝑐 is a zero of 𝑓(𝑥). Now, show that the converse holds true. That is, if 𝑓(𝑥) = 0, then 

𝑓(𝑥) = (𝑥 − 𝑐)𝑔(𝑥) for some polynomial 𝑔(𝑥). By the Remainder Theorem, when 𝑓(𝑥) =

(𝑥 − 𝑐)𝑔(𝑥) + 𝑟 is divided by (𝑥 − 𝑎), 𝑓(𝑎) = 𝑟 is the remainder. Since 0 = 𝑓(𝑐) =

(𝑐 − 𝑐)𝑔(𝑐) + 𝑟 = 𝑟, we see 𝑓(𝑥) = (𝑥 − 𝑐)𝑔(𝑥). Hence, (𝑥 − 𝑐) is a factor of 𝑓(𝑥). 

Example 3.1.2. Consider the function 𝒇𝟏(𝒙) = 𝒙𝟑 + 𝟑𝒙𝟐 − 𝟑𝒙 − 𝟓. 

 

Figure 3.1. Graph of the polynomial 𝒇(𝒙) = 𝒙𝟑 + 𝟑𝒙𝟐 − 𝟑𝒙 − 𝟓 
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Simply by examining the behavior of the graph, we see there are three zeros, one of them at 𝑥 =

−1. Although by using a command on a graphing calculator, one can approximate the real 

number that the zero is at, this is not so easy to do by hand. If 𝑥 = −1 is a zero of this function, 

there is a factor (𝑥 + 1) in the factorization of 𝑓(𝑥). Therefore, 𝑓(𝑥) = 𝑥3 + 3𝑥2 − 3𝑥 − 5 =

(𝑥 + 1)𝑔(𝑥) for some polynomial 𝑔(𝑥). One can perform standard long division, yielding 𝑥2 +

2𝑥 − 5 as polynomial 𝑔(𝑥). 

 

Figure 3.2. Long Division of the polynomial 𝒇(𝒙) = 𝒙𝟑 + 𝟑𝒙𝟐 − 𝟑𝒙 − 𝟓 

Let us revisit long division from the lens of the Factor Theorem. All of the beginning terms of 

each step have the opposite term right above them. −𝑥3 is beneath 𝑥3, −2𝑥2 is beneath 2𝑥2, and 

5𝑥 is beneath −5𝑥. We omit these terms without missing any information. Let us shift 

everything up such that combining like terms from polynomial 𝑔(𝑥) such that (𝑥3 + 3𝑥2 − 3𝑥 −

5) + (−𝑥2 − 2𝑥 + 5) = 𝑥3 + 2𝑥2 − 5𝑥 + 0. One can determine the quotient polynomial by 

dividing each one of the terms by 𝑥 and combining the results. Therefore, dividing the 

polynomial 𝑥3 + 2𝑥2 − 5𝑥 + 0 by 𝑥 yields the quadratic function 𝑥2 + 2𝑥 − 5, the quotient. 
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Now, after proving the Division and Factor Theorem and their applications, they can be 

used to prove Theorem 3.1.3.  

Theorem 3.1.3. Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a polynomial over 𝐹 of degree two or three. Then, 𝑓(𝑥) is 

irreducible if and only if it has no zeros in 𝐹, where 𝐹 is ℚ or ℝ.  

Proof. If 𝑓(𝑥) has a zero 𝑐 in ℚ, then by the Factor Theorem, there is a polynomial 𝑔(𝑥) such 

that 𝑓(𝑥) = (𝑥 − 𝑐)𝑔(𝑥) and the degree of 𝑔(𝑥) is lower than the degree of 𝑓(𝑥). This implies 

that if 𝑓(𝑥) is irreducible then it has no rational roots. If 𝑓(𝑥) is a reducible polynomial of 

degree two or three over ℚ, then it has a factor of the form (𝑥 − 𝑐) for some rational number 𝑐 

and 𝑓(𝑥) = (𝑥 − 𝑐)𝑔(𝑥). Then 𝑓(𝑥) has a zero 𝑥 = 𝑐. We show that if 𝑓(𝑥) has no rational 

zeros, then 𝑓(𝑥) is irreducible. The proof remains valid for 𝐹 = ℝ. 

These fascinating theorems and corollaries bridge into some of the most significant 

findings of irreducibility over rationals contributed by Carl Gauss, a child prodigy and Prince of 

Mathematics.  

Lemma 3.1.1. Let 𝑓(𝑥) be a polynomial in ℤ[𝑥]. If 𝑓(𝑥) is reducible in ℤ[𝑥], then it is also 

reducible in ℚ[𝑥]. More precisely, if 𝑓(𝑥) ∈ ℤ[𝑥], 𝑓(𝑥) can be factored into two polynomials of 

degree 𝑟 and 𝑠 in ℤ[𝑥], then 𝑓(𝑥) can be factored into two polynomials with the same degrees 𝑟 

and 𝑠 in ℚ[𝑥].  

Corollary 3.1.1. Let (𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 ∈ ℤ[𝑥], 𝑎0 ≠ 0.  If 𝑓(𝑥) has a rational 

root, then it has a zero 𝑐 ∈  ℤ, and this zero divides 𝑎0. 

Proof. Let 𝑐 be a rational zero of 𝑓(𝑥). Then (𝑥 − 𝑐) is a linear factor of 𝑓(𝑥) over ℚ. By 

Gauss’ Lemma, 𝑓(𝑥) has a linear factor in ℤ[𝑥] such that 𝑓(𝑥) = (𝑑𝑥 + 𝑒)𝑔(𝑥), where 𝑔(𝑥) is a 
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polynomial with integer coefficients and 𝑑 and 𝑒 are integers. The leading coefficient of 𝑓(𝑥) is 

1, so 𝑑 divides 1. In the equation 𝑓(𝑥) = (𝑑𝑥 + 𝑒)𝑔(𝑥), 𝑑 is either 1 or −1. This shows that 

𝑓(𝑥) has an integer solution which is either 𝑒 or −𝑒. 

3.2 Eisenstein’s Criterion 

Following Gauss’ Lemma and several other lemmas we introduced involving the 

irreducibility of polynomials, we will prove Eisenstein’s Criterion. Eisenstein’s Criterion allows 

for the existence of irreducible polynomials of degree 𝑛 over ℚ, which are not always that easy 

to construct.  

Theorem 3.2.1  (Eisenstein’s Criterion). Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛 ∈

ℤ[𝑥], 𝑛 ≥ 1. If there is a prime p such that 𝑝|𝑎0, 𝑝|𝑎1, … , 𝑝|𝑎𝑛−1, 𝑝 ∤ 𝑎𝑛,  and  𝑝2 ∤ 𝑎0, then 𝑓(𝑥) 

is irreducible in ℚ[𝑥].  

Proof. The following is a proof by contradiction. Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 +

𝑎𝑛𝑥𝑛 ∈ ℤ[𝑥], 𝑛 ≥ 1. By Gauss’ Lemma, 𝑓(𝑥) is irreducible in ℚ[𝑥] if and only if it is 

irreducible in ℤ[𝑥]. Suppose 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), such that 𝑔(𝑥) = 𝑏𝑑𝑥𝑑 + ⋯ + 𝑏0 and ℎ(𝑥) =

𝑐𝑒𝑥𝑒 + ⋯ + 𝑐0, where 𝑔(𝑥) and ℎ(𝑥) are polynomials with integer coefficients, and 𝑑 + 𝑒 = 𝑛. 

If 𝑝|𝑎0 and 𝑏0𝑐0=𝑎0, 𝑝|𝑏0𝑐0. Since 𝑝2 ∤ 𝑎0, either 𝑝|𝑏0 or 𝑝|𝑐0, but not both. Let us assume 𝑝|𝑏0 

and 𝑝 ∤ 𝑐0. Then, 𝑝 divides 𝑎1 = 𝑏1𝑐0 + 𝑏0𝑐1, and 𝑏0, therefore, 𝑝|𝑏1𝑐0. Hence, 𝑝|𝑏1. Since 𝑝 

divides 𝑎2 = 𝑏2𝑐0 + 𝑏1𝑐1 + 𝑏0𝑐2, 𝑝 divides 𝑏2𝑐0 = 𝑎2 − 𝑏1𝑐1 − 𝑏0𝑐2. So, 𝑝 divides 𝑏2 but not 

𝑐𝑜 . We continue this way for 𝑎3, … , 𝑎𝑑 , and conclude by induction that  𝑝 divides all 𝑏0, … , 𝑏𝑑.  

The implication is that 𝑝 divides 𝑎𝑛. This contradicts the condition 𝑝 ∤ 𝑎𝑛. The proof is 

completed. 
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This implies 𝑝 divides 𝑎𝑛, which is a contradiction.  

Example 3.2.1. Use Eisenstein’s Criterion to show that 𝑓(𝑥) = −7𝑥4 + 25𝑥2 − 15𝑥 + 10 is 

irreducible in ℚ[𝑥].  

Our goal is to find some prime 𝑝 such that that 𝑝|𝑎0, 𝑝|𝑎1, … , 𝑝|𝑎𝑛−1, 𝑝 ∤ 𝑎𝑛,  and  𝑝2 ∤

𝑎0. Consider the prime 𝑝 = 5, 5|10, 5| − 15, and 5|25. Additionally, 5 ∤ −7, and 52 ∤ 10. 

Therefore, by Eisenstein’s Criterion, 𝑓(𝑥) = −7𝑥4 + 25𝑥2 − 15𝑥 + 10 is irreducible over ℚ. 

Example 3.2.2. Use Eisenstein’s Criterion to show that 𝑓(𝑥) = 5𝑥11 − 6𝑥4 + 12𝑥3 + 36𝑥 − 6 

is irreducible in ℚ. 

Let 𝑝 = 2. Since, 2|−6 , 2|12, 2|36, 2 ∤ 5, and 22 ∤ −6, by Eisenstein’s Criterion, 𝑓(𝑥) =

5𝑥11 − 6𝑥4 + 12𝑥3 + 36𝑥 − 6 is irreducible over ℚ. 
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Conclusion 

In this thesis, I tried to connect Division Algorithm for integers and the irreducibility and 

zeros of a polynomial with the following Common and Core Standards: 

CCSS.Math.Content.HSA.APR.A.1: Understand that polynomials form a system analogous to 

the integers, namely, they are closed under the operations of addition, subtraction, and 

multiplication; add, subtract, and multiply polynomials. Understand the relationship between 

zeros and factors of polynomials. 

CCSS.Math.Content.HSA.APR.B.2: Know and apply the Remainder Theorem: For a polynomial 

p(x) and a number a, the remainder on division by x - a is p(a), so p(a) = 0 if and only if (x - a) is 

a factor of p(x). 

CCSS.Math.Content.HSA.APR.B.3: Identify zeros of polynomials when suitable factorizations 

are available, and use the zeros to construct a rough graph of the function defined by the 

polynomial. 

The motivation to connect them is an attempt to adapt the IL Learning Standards. "The 

ILS for math are designed to help students acquire a deep, conceptual understanding of core 

math content by adding focus, coherence, and rigor to learning. Focus is the study of a few key 

concepts; shifting teaching/learning from a mile long and an inch deep model to deeper 

understanding of fewer concepts. Coherence is making math connections between grade levels 

logical building on progression.  Rigor is the equal balance of conceptual understanding, 

application, and procedural skill and fluency. These key shifts in math teaching and learning will 

focus on concept mastery and will allow students to build upon previous skills, create 

opportunities for deeper conceptual mathematical understanding and application." (ISBE, 2003). 
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High school mathematics has been stained as fearful and challenging. A high school 

mathematics course is built upon several expectations that are demanding and can be 

overwhelming for a teenager. Catalyzing Change defines “mathematically demanding courses as 

those courses that require clarity precision in reasoning, have focused and significant 

mathematics learning standards, and approach the mathematics in an instructionally balanced 

way that includes attention to conceptual understanding, procedural fluency, problem solving, 

and mathematical reasoning and critical thinking practices” (NCTM, 2018). As educators, we 

should work to align our curriculum to these standards and bring our students up to these 

standards as well. This type of expectation can be met with hard work and dedication from both 

the teacher and students. Although there are students who enjoy mathematics at a high school 

level past algebra, the majority are intimated by its complexity and find difficulty in applying it 

to their studies. Through the various theorems we have introduced in our writing: Division 

Theorem, Gauss’ Lemma, Eisenstein’s Criterion, it is our hope that these are theorems we can 

introduce in conversation in high school classrooms. Moving forward, I hope that through our 

effort to engage and intrigue students to explore conceptual understanding of theorems of 

integers and polynomials, students can overcome the fear and anxiety so that the exploration of 

higher-level mathematics may open a door for creativity and a sense of accomplishment for them 

and prepare them for the challenge in the future.  
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