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Abstract

Fermat’s Last Theorem sat unproven for more than 300 years. It all started around 1637,

when Pierre de Fermat stated the theorem: xp+yp = zp has no positive integer solutions

for x, y, z when p > 2. He wrote a note in the margin saying that he has the proof but it

was bigger than the margin. Sophie Germain, a French mathematician tried her hand in

proving Fermat’s Last Theorem. She came up with a theorem that was later referenced

to as Germain Theorem. She took Fermat’s Last Theorem xp + yp = zp and suggested

that if p is a prime number greater than 2 and 2p+ 1 is a prime also, then p must divide

x, y, or z. Germain’s theory and proof changed the approach to proving Fermat’s Last

Theorem and divided it into two cases where the first case states that none of the three

valuesx, y, or z is divisible by p. and the second case states that the exponent p divides

at least one of the three values x, y,or z. The main concept of this paper is to explore

Germain’s approach to solving Fermat’s Last Theeorem for the exponent p > 2 and how

her idea led to solving the problem by introducing a new and fresh approach.
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1 Introduction:

Cubem autem in duos cubos, aut quadratoquadratum in duos quadrato-

quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in

duos ejusdem nominis fas est dividere: cujus rei demonstrationem mirabilem

sane detexi. Hanc marginis exiguitas non caparet. [7]

In the late 1630s, Pierre de Fermat (1601-1665) wrote this note in the margin of his

copy of Claude Bachet’s Latin translation of Diophantus’s Arithmetica which got the

attention of great mathematicians for over 300 years. In English, ”It is impossible to

separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any

power higher than the second into two powers of like degree; I have discovered a truly

remarkable proof which this margin is too small to contain.” [5]

Fermat’s Last Theorem which will be abbreviated to (FLT) from now on in this paper is

converted in modern terms into:

xp + yp = zp has no positive integer solutions,

for x, y, z when p > 2. [6]

It looks like a simple conjecture, but it took a great number of mathematicians over three

centuries to prove it, until Sir Andrew Wiles who worked on it secretly for most of his

life, proved it in a three inspiring lectures in June 1995, at the Isaac Newton Institute in

Cambridge. [4] Wiles used techniques far beyond what was available to Fermat, and it

is therefore believed that Fermat thought he had a proof that was in fact false.
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Figure 1: Pierre-De-Fermat (1601-1665)
[12]

The journey to prove FLT led to the numerous discoveries of modern Mathematics and

the additions to existing mathematics. In short, proving Fermat’s Last Theorem over the

centuries was very beneficial to the mathematical fields to bring it to the 20th century

mathematics. Fermat might not have proved the theorem as he stated in Diaphanous

book margin, because he later published his proof of the special case p = 4.

The phenomenon of Fermat’s last theorem started when Fermat died in (1665). His

son, Samuel, published his copy of Diophantous because he was afraid that his father’s

work would be lost and forgotten. From then on, Fermat’s Last Theorem became a

major mathematical challenge to great mathematicians everywhere. Mathematicians

of the highest abilities, including Euler, Legendre, Gauss, Sophie Germain, Dirichlet,
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Kummer and Cauchy worked on it. Sophie Germain, like a lot of mathematicians, was

fascinated with FLT for some time, but lack of communication with peers to bounce

ideas off and get feedback was a hindrance. Despite her lack of formal education, she

was the first mathematician to make progress with a general approach toward proving

Fermat’s Last Theorem [3]. Fermat’s Last Theorem was named such, not because it

was the last theorem Fermat proposed or worked with, but because it was the last of

his theorems to be proven. Germain was one of the first to provide a different plan

for proving Fermat’s Last Theorem and to give a partial solution for a large class of

exponents instead of working on one prime number case at a time [8].

Germain was born in Paris on April 1, 1776. Her family was middle-class wealthy. She

had two other sisters. Her father, Ambroise-Franois Germain, a silk merchant, was a

member of the third estate to the Constituent Assembly convened in 1789 [6].

She wasn’t educated formally, because in the 18th century France, girls were not per-

mitted to go to school. She was not of the elite class where she could have gotten some

education by a special tutor, so she taught herself the basics. The French Revolution

broke out when Germin was only thirteen years of age. She started spending a great

deal of time in the library because her family was afraid for her safety and would not

let her leave the house. She was facinated by the story she read of how Archimedes

died. He was speared to death by a Roman soldier who asked him a question during

the invasion of the city by the Romans. Archimedes was so engrossed in the study of a

geometric figure in the sand that he failed to respond and thus was killed.

Germain thought if geometry could hold such fascination for Archimedes, then it was a

subject worthy of attention and studying. This interested her in mathematics. One of the
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amazing things about her was that she taught herself Latin and Greek using her family’s

library so she could read the works of Sir Isaac Newton and Leonhard Euler.

2 Germain’s work on number theory prior to FLT:

In 1794, when Sophie Germain was 18 years old, the Ecole Polytechnique was founded

in Paris. It was an academy founded to train mathematicians and scientists for their

country [3]. Women were not allowed to enroll in the academy, but Germain was able

to get the lecture notes for several of the courses for her studies. This opened the door

for her to learn from prominent mathematicians of her day by writing to them using

the pseudonym of Monsieur Antoine-August LeBlanc who was a former student of the

Academy that died prior to this. She contacted Joseph-Louis Lagrange at the end of a

term in the academy to submit a report on analysis. He was very impressed with her

work and wanted to meet the student who had written it.

3 Sophie Germain’s life and Education:

Lagrange was amazed that the work was actually done by a female, but he recognized

her abilities and became her mentor and he encouraged and supported her for several

years. Germain became a part of the circles of scientists and mathematicians that she

was not allowed in before because she was introduced by a male mathematician (La-

grange).

Germain contributed to acoustics, a branch of physics that deals with sounds and sound
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Figure 2: Sophie Germain (1776-1831)
[14]

waves, elasticity, the ability of a substance to change form or shape responding to a

force exerted, and also the Theory of Numbers. The most famous number theory topic

she worked on was Fermat’s Last Theorem. Number theory was of a special interest

to her; it occupied her throughout her life. When Adrien-Marie Legendre published his

book of Théorie des Nombres in 1789, she began corresponding with him incognito after

studying his work closely. Germain sent him some of her own ideas on the subject of

number theory and elasticity. Her work on number theory eventually made significant

results.

More than a decade later, she started a correspondance with the German mathemati-

cian Carl Friedrich Gauss after he published his book in Number Theory, Disquisi-

tiones Arithmeticae in 1801. According to Germain’s friend the Italian mathematician,

Guglielmo Libri, she was amazed by the originality of this famous professor’s work and
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experienced another incentive to engage in this kind of analysis. She sent Gauss some

of her work in number theory using her pseudonym. In one correspondance in the year

1807, she claimed that: if xp+yp is of the form of h2+pf 2 then x+y is also of the same

form. Gauss replied: 1511+811 can be written as h2+11f 2, but 15+8 cannot [?, p-49].

In the same year, Gauss found out that he was corresponding with a gifted woman. He

was so excited that he wrote to her:

But how can I describe my astonishment and admiration on seeing my

esteemed correspondent Monsieur LeBlanc metamorphosed into this cele-

brated person, yielding a copy so brilliant it is hard to believe? The taste for

the abstract sciences in general and, above all, for the mysteries of numbers,

is very rare: this is not surprising, since the charms of this sublime science

in all their beauty reveal themselves only to those who have the courage

to fathom them. But when a woman, because of her sex, our customs and

prejudices, encounters infinitely more obstacles than men, in familiarizing

herself with their knotty problems, yet overcomes these fetters and pene-

trates that which is most hidden, she doubtless has the most noble courage,

extraordinary talent, and superior genius... The scientific notes with which

your letters are so richly filled have given me a thousand pleasures. I have

studied them with attention and I admire the ease with which you penetrate

all branches of arithmetic, and the wisdom with which you generalize and

perfect [6, p-7].

She correspondened with Lagrange, Lagendre and Gauss for long periods of time and

her work was respected by the three highly regarded mathematicians and later by others

who knew of her work.
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4 Germain’s early theorems regarding FLT:

When the academy Ecole Polytechnique established a prize to proving FLT, it interested

Germain and she started working on a proof. She never published any of her work and

findings while she was alive, but Legendre credited her in 1825 a footnote in of his

second edition memoires that he published on FLT. After years of research and hard

work on her own on FLT, she decided she needed to discuss her work with a number

theorist to share her new, more general approach to proving Fermat’s Last Theorem, so

she wrote to Gauss about her discoveries of Fermat’s Last Theorem:

I add to this art some other considerations which relate to the famous equa-

tion of Fermat xn + yn = zn whose impossibility in integers has still only

been proved for n = 3 and n = 4; I think I have been able to prove it for

n = p − 1, p being a prime number of the form 8k + 7. I shall take the

liberty of submitting this attempt to your judgment, persuaded that you will

not disdain to help with your advice an enthusiastic amateur in the science

which you have cultivated with such brilliant success [8].

This propopsition did not work out because it was missing some elements to complete

the proof. This letter of hers shows that she already knew of the proof for the exponents

3 and 4. The case for the exponent 3 was proven by Euler earlier, but it was discovered

later that it had some flaws. The case for exponent 4 was proven by Fermat himself

using the method of infinite decent [8].

As a direct result of Germain’s work on FLT, Fermat’s Last Theorem got divided into

two cases:
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Case one: xp + yp = zp has no integer solutions where x, y, and z are relatively prime

to p meaning that p doesn’t divide x, y, or z.

Case two: xp + yp = zp has no integer solutions to which one and only one of the

relatively prime integers x, y, and z is divisible by p. This means that p divides only one

of x, y, or z.

For the purpose of this paper, we’ll use the notation for case one of FLT as

FLT1, which states: There does not exist nonzero, pairwise relatively prime integers

x, y and z such that: xp + yp + zp = 0 and p - xyz. and

FLT2 that states: There does not exist nonzero, pairwise relatively prime integers x, y

and z such that: xp + yp + zp = 0 and p | only one of x, y or z. [9] In this paper, I will

be focusing on FLT1 because that is what Germain did. Germain worked with primes

to tackle FLT, then she came up with her own theorem regarding the exponent p, later

she started to involve p2 in her theorems which is a little bit more broad than that of p.

Another one of her theorems was her key theorem to work with large-sized solutions

and her grand plan.

I will state a few simple mathematical theorems to help explain the proofs of the theo-

rems. The following fact is used in the proof of Sophie Germain’s theorem, it also relies

on the Fundamental Theorem of Arithmetic.

Theorem 1. Let r and s be relatively prime integers. If rs is a pth power, then r and s

must both be pth powers.

Fermat’s Little Theorem (FLTl) states: If p is prime, and a is a natural integer where

p - a, then ap−1 ≡ 1 (mod p).

Lemma 1. Let x, y be coprime integers and p be an odd prime. Then, the Greatest

8



Common Divisor GCD(x, y) = (x+ y, x
p+yp

x+y
) = 1 or p

5 Sophie Germain’s letter to Gauss in 1819:

Germain outlined her strategy for a general proof of FLT in a long letter to Gauss,

written on May 12, 1819, presenting her ideas on FLT, and explaining that she had

never stopped thinking about number theory and that she had been thinking on FLT

long before the Academy established this new prize [6].

Although I have worked for some time on the theory of vibrating surfaces,

I have never ceased thinking about the theory of numbers. I will give you

a sense of my absorption with this area of research by admitting to you

that even without any hope of success, I still prefer it to other work which

might interest me while I think about it and is sure to yield results. Long

before our Academy proposed a prize for a proof of the impossibility of

the Fermat equation...which was brought to modern theories by a Geometer

who was deprived of the resources we possess today, tormented me often.

I have a vague inkling of a connection between the theory of residues and

the famous equation; I believe I spoke to you of this idea a long time ago,

because it struck me as soon as I read your book. Here is what I have

found...the order in which the residues (powers equal to the exponents) are

distributed in the sequence of natural numbers determines the necessary

divisors which belong to the numbers among which one establishes not only

the equation of Fermat, but also many other analogous equations... This is
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clear, since the equation: xp+yp = zp yields the congruence 1 ≡ rsp−rtp in

which r represents a primitive root and s and t are integers. It follows that if

there are infintely many such numbers, the equation would be impossible [6,

p-20].

Germain is utilizing some facts about the residues modulo the prime and another fact

that for a prime modulus, there is always a primitive root for the prime modulus, such

that any number with nonzero residue is congruent to a power of the primitive root. For

the above examples, r = 2 is a primitive root of p = 7 and of p = 13 [6].

5.1 Sophie Germain’s Auxiliary primes:

Germain’s main idea was to prove FLT prime exponents in general. She started with

the idea: if there exist a prime p where 2p + 1, is also a prime, then they are auxiliary

primes. These were later called Germain’s primes. The first few Germain primes are:

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, and 131. A list of a few sets of Germain primes are

in Table 1 below:

Germain proved FLT for the prime p and its relative prime 2p + 1. This is also known

by some mathematicians as the weaker version of Germain’s theorem.

5.2 Sophie Germain’s theorem and proof to solve FLT for p:

Trying to prove FLT, Sophie Germaine came up with a theorem stating that:
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Table 1: Sophie Germain’s primes

prime p 2p+ 1

2 5
3 7
5 11

11 23
23 47
29 59
41 83
53 107

Theorem 2. Let p be an odd prime. If there is an auxiliary prime θ with the properties:

1. xp + yp + zp = 0 (mod θ) implies x = 0 or y = 0 or z = 0 (mod θ), and

2. ap ≡ p (mod θ) is impossible for any integer a,

then the equation xp + yp = −zp has no solutions for which x, y, and z are

relatively prime to p, where p - x, y, z.

Proof. Suppose that there is a solution x, y, z to the equation, −xp = yp + zp such

that p - x, y, or z and assume that x, y, and z are relatively prime. Now we can factor

−xp = yp + zp as follows:

yp + zp = (y + z)(yp−1 − yp−2z + yp−3z2 − ...+ zp−1)

Let (yp−1 − yp−2z + yp−3z2 − ... + zp−1) be referred to as f(x, y). To prove that both

factors (y + z) and f(x, y) are relatively prime, we introduce a prime n that is common

to both factors, (y + z) and f(x, y), then y ≡ −z (mod n) and by substituting in

f(x, y), we get: pyp−1 ≡ 0 (mod n). So either n | p or n | yp−1. If n | p, then
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n = p since they are both primes. This would contradict the assumption that none of

x, y, or z is divisible by p and if p | (yp + zp), then (−x)p and so p | x. Thus the

second statement should be true. But if y ≡ 0 (mod n), then n would divide both

y and y + z, but y and z have no common factors. As neither of these can be true,

there is no prime factor that divides both y+ z and f(x, y) which makes them relatively

prime, and consequently they are both p th powers by Theorem 1 above. The equations

(−y)p = (xp + zp) and (−z)p = (xp + yp) can be factored the same way. From this,

it follows that there must be integers a, b, c,m, j, and k in the following equations that

the British mathematician Peter Barlow introduced in 1810 and stated by the Norwegian

mathematician Niels Henrik Abel in 1823:

y + z = mp yp−1 − yp−2z + ...+ zp−1 = ap x = −ma (1)

z + x = jp zp−1 − zp−2x+ ...+ xp−1 = bp y = −jb, (2)

x+ y = kp xp−1 − xp−2y + ...+ yp−1 = cp z = −kc. (3)

the above equations were introduced by the British mathematician Barlow in 1812 and

stated again by Abel in 1823. Now, since: xp + yp + zp = 0 (mod θ), implying by

the first condition of the theorem that x, y, or z must be zero mod θ, then lets assume

without loss of generality that x ≡ 0 (mod θ), then: 2x = x+x = jp+kp+−(y+z) =

jp + kp + (−m)p ≡ 0 (mod θ). Now, θ must divide either m, j, or k according to the

first condition of the theorem. If j or k is 0 (mod θ), then y = −jb ≡ 0 (mod θ),

or z = −kc ≡ 0 (mod θ). This together with the fact that x ≡ 0 (mod θ) implies

that at least two of x, y, and z are divisible by θ, which contradicts the assumption that

x, y, and z are pairwise relatively prime. Therefore, as neither j nor k is congruent to

0 (mod θ), then m ≡ 0 (mod θ) and since y + z = mp, this implies that y = −z
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(mod θ). So ap = yp−1− yp−2z+ ...+ zp−1 ≡ pyp−1 ≡ 0 (mod θ) as before and, since

x ≡ 0 (mod θ), cp = xp−1 − xp−2y + xp−3y2 − ... + yp−1 ≡ yp−1 (mod θ). Putting

these together gives, ap ≡ pcp (mod θ). Since c is not congruent to 0 (mod θ), there

is an integer g such that cg ≡ 1 (mod θ), as every element not congruent to zero must

have a multiplicative inverse (mod θ). We can thus insert a factor of (cg)p on the left

side of ap ≡ pcp (mod θ) without changing the result, so (acg)p ≡ pcp (mod θ). By

canceling the factor of cp, we reach (ag)p ≡ p (mod θ), which is contrary to the second

assumption on θ which proves Sophie Germain’s theorem.

5.2.1 Sophie Germain’s first condition on her theorem for p:

In her work to find suitable primes, she worked with primes p < 100 and the auxiliary

primes θ = Np+1 with N ranging from 1 to 10. The combined efforts of Germain and

Lagendre, made it up to 197 of auxiliary primes discovered. Below is a table of such

auxiliary prime θ where N is a positive integer.

Table 2: Auxiliary Primes θ = Np+ 1 to primes p

N p θ N p θ N p θ N p θ

2 3 7 2 5 11 4 7 29 2 11 23
4 13 53 8 17 137 10 19 191 2 23 47
2 29 59 10 31 311 4 37 149 2 41 83
4 43 173 14 47 659 2 53 107 14 59 827

16 61 977 4 67 269 8 71 569 4 73 293
4 79 317 2 83 167 2 89 179 4 97 389
8 101 809 10 103 1031 8 107 857 10 109 1091
2 113 227 4 127 509 2 131 263 8 137 1097
4 139 557 8 149 1193 10 151 1511 10 157 1571
4 163 653 14 167 2339 2 173 347 2 179 359

10 181 1811 2 191 383 4 193 773 38 197 7487

13



In the table above, the values N = 6 and N = 12 are not shown because a prime of

the form θ = 6p + 1 would not satisfy condition one, For example, suppose p = 5

and θ = 31, let x = 1, y = 9, and z = 81. None of these three integers is equal to 0

(mod 31), but, 15+95+815 = 3486843451 = 112478821 ·31 ≡ 0 (mod 31) Meaning

that integers x, y, z with p = 5 and N = 6 violate Germain’s first condition which

states: xp+ yp+ zp = 0 (mod θ) implying that x = 0 or y = 0 or z = 0 (mod θ). The

table and the argument were taken from [8].

5.2.2 Demonstarting the proof for p by using an example:

for Fermat’s Equation: xp+yp+zp = 0 (mod 11), if we factorize (−x5) = (y5+z5) =

(y+z)(y4−y3z+y2z2− ...+z4) as before, the two factors are relatively prime because

we assumed that x, y, z are pairwise coprime and none of them are divisible by 5, then

both factors must be individually 5th power residues by unique factorization. The same

argument applies to the factorization of −y5 and −z5, and so we have integers m, j, k

and a,b,c such that:

y + z = m5 y4 − y3z + y2z2 − yz3 + z4 = a5

z + x = j5 z4 − z3x+ z2x2 − zx3 + x4 = b5

x+ y = k5 x4 − x3y + x2z2 − xy3 + y4 = c5

and we have −x5 = m5a5 which implies that −x = ma. Similarly we have, −y = jb

and−z = kc. Now if we look at the 5th power integers (mod 11) for x = 0, 1, 2, ..., 10,

we find the 5th power residues (mod 11) = 0, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1, so the

5th power of an integer must be 0,±1 (mod 11) by using an alternate proof without the

assumption from theorem 2 about θ, and according to the condition of the proof we can
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only have a solution of xp + yp + zp = 0 if one of the numbers x, y, z is a multiple of

11, because if not, then all three of these will be ±1 (mod 11), and adding the three

such values up to zero is impossible. There fore, 11 divides only one of x, y, z. Since

the three variables are symmetrical, we can assume that one of them, let’s say x ≡ 0

(mod 11), but we have:

2z = (z − y) + (z − x) + (x+ y) = mp + jp + kp ≡ 0 (mod q) ≡ 0 (mod 11).

We have three 5th powers adding up to 0 (mod 11) and again as before, one of the

three numbers m, j, k must be a multiple of 11. Since z = ma ≡ 0, then 11 doesn’t

divide j nor k because that would imply that x or y are divisible by 11 which contradicts

the assumption that x, y, z are realatively prime. This leads us to conclude that it can

only be m. But, if we say 11 | m, then that also contradicts the assumption because if

m = x + y ≡ 0 (mod 11) then we get x ≡ −y (mod 11) and substituting in the first

equation, yeilds a5 ≡ 5y4 (mod 11), and c5 ≡ y4 (mod 11). If we combine the two

preceeding equations, we get: a5 ≡ 5c5 (mod 11) and this is impossible because all

5th powers modulo 11 are 0,±1. We can also rule out a = c ≡ 0 (mod 11) because

z = −kc, and we know that 11 - z, which completes the example [8].

5.3 Sophie Germain’s Theorem and proof to solve FLT for p2:

The following results are from [1], some from [2], and some from [6]

Germain later extended her proof to include p2 instead of just p using the theorem:

Theorem 3. for an odd prime exponent p, if there exists an auxiliary prime q such that:
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1. there are no two nonzero consecutive pth powers mod q and,

2. xp 6= p (mod q) for all 1 ≤ x ≤ q − 1, then in any solution to the Fermat

equation zp = xp+ yp, one of x, y, or z must be divisible by p2 , and FLT1 is true

for p [6, p-9].

The nonconsecutivity condition, will be referred to as C1 and for the second condition,

p not being a pth power residue will be reffered to as C2.

Lemma 2. There are no consecutive pth power residues (mod q) if and only if xp +

yp + zp ≡ 0 (mod q), then x, y, or z ≡ 0 (mod q).

Proof. To see that this lemma is true, we construct the following short proof: Suppose

that: xp + yp + zp ≡ 0 (mod q) has a solution and suppose that none of x, y, z are

divisible by q. Equivilantly, xp + yp ≡ −zp ≡ −zp (mod q), and suppose that none

of the integers are congruent to 0 (mod q). Multiplying both sides by (x−1)p gives the

congruence:

1 + (y/x)p = (z/x)p

Thus the residues of (y/x)p and (z/x)p are consecutive non-zero pth power. This proof

shows both directions by contraposition. Assume that we have consecutive pth powers,

1 + hp ≡ op (mod q) where none of the elements is equal to zero. This shows that

the residues of hp and op will be consecutive which contradicts C1. If we multiply

both sides by gp for g some primitive root (mod q), we find a nontrivial solution to

gp+(hg)p+(og)p ≡ 0 (mod q). None of them are equal to zero and all are pth powers

which contradicts C2.

Now to prove Theorem 3 above:
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Proof. Let’s assume that x, y and z are all coprime and that xp + yp = zp and that p

does not divide xyz, then we have:

x+ y, xp−1 − xp−2y + xp−3y2 − ...+ yp−1,

z − y, zp−1 + zp−2y + zp−3y2 + ...+ yp−1,

z − x, zp−1 + zp−2x+ zp−3x2 + ...+ xp−1

Now let f(x, y) represent the right-hand expression on the first line. If some prime q 6= p

divides both (y+x) and f(x, y), then y ≡ −x (mod q), by definition of q | x+ y and by

substituting in f(x, y), we get: pxp−1 (mod q), which is divisible by q by assumption.

x must be divisible by q, since q doesn’t divide p. This means that x and x + y are

divisible by q which implies that y is divisible by q contradicting the assumption that x

and y are relatively prime. Thus no prime other than p can divide both x+y and f(x, y).

The same can be seen for the second and third pairs of numbers, using; if q divides z−y

then, z ≡ y (mod q), and similarly for x where z ≡ x (mod q). Now we use the claim

from the theorem that p must divide one of x, y, or z. Under the assumption that x, y,

and z are all coprime with p, we let z = ma, x = jb, and y = kc, and now we have the

following equations:

x+ y = mp and xp−1 − xp−2y + xp−3y2 − ...+ yp−1 = ap

z − y = jp and zp−1 + zp−2y + zp−3y2 + ...+ yp−1 = bp

z − x = kp and zp−1 + zp−2x+ zp−3x2 + ...+ xp−1 = cp

We show that for each pair of numbers above, p is the only prime divisor they have
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in common. Looking at line (8) explains why x + y = mp, with no a factors, and

f(x, y) = ap, with no m factors because if otherwise, the left and right numbers would

not be coprime. We can see that (x+y) 6= mk for any k 6= p, and we have f(x, y) = ap.

The other two equations follow suit. Now from the lemma 2 above, we assume that q | z

then q | 2z, so 2z = (z − y) + (z − x) + (x+ y) = jp + kp +mp ≡ 0 (mod q). Now:

mp + jp + kp ≡ 0 (mod q) then either m, j, or k is divisible by q by the Lemma above.

If either j or k were divisible by q , using that y = z−jp and x = z−kp from equations

5 and 6, and that q | z, then either y or x, respectively, would be divisible by q too.

This is a contradiction to the assumption that x, y, and z are all coprime. Thus, it must

be that q | m. x + y = mp, so this implies that y ≡ −x (mod q). We also have that

f(x, y) ≡ pxp−1 ≡ ap (mod q), as shown above. Since z ≡ 0 (mod q) by assumption,

z − x = kp ≡ −x (mod q). So x must be a pth power residue (mod q). Now to use

pxp−1 ≡ ap (mod q) to substitute it in kp for x, yields p(kp−1)p ≡ ap. Recalling that

q - x, and since q | z by assumption and x and z are coprime implies that p is also a pth

power residue (mod q). This contradicts C2, hence p | x, y, or z.

We now assume that p | z and setting z = map. Now, x + y = mppp−1 and f(x, y) =

pap, x = jb and y = kc because x and y are still coprime to p, and since zp = (x +

y)f(x, y) must be divisible by pp, it suffices to show that f(x, y) is divisible by p but

not by pk for all k > 1. f(x, y) = yp+xp

x+y
. Let s = x+ y yielding:

f(x, y) =
(s− x)p + xp

s
= sp−1 −

(
p

1

)
sp−2x+ ...−

(
p

p− 2

)
sxp−2 +

(
p

p− 1

)
xp−1.

Every term but the last in the above sum is divisible by p2. Since p divides s = x+ y ≡

xp + yp ≡ zp (mod p), by FLTl. The last term is divisible by p, since x is relatively
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prime to p. So f(x, y) is divisible by p too. Using the equations above, 2z − (x+ y) =

2z − x − y = mp + jp; implies that p | (mp + jp), since p divides both z and x + y.

Moreover, p | (m + j), by FLTl, m ≡ −k (mod p), which implies that mp ≡ jp

(mod p2). To clarify this, we write m = −j + tp, where t ∈ Z. mp = (−j +mp)p =

−jp + jp−1p2t− ...+(tp)p ≡ −jp (mod p2), since p2 divides all terms except for −jp.

x+y = mppp−1 was shown, so p2 | (x+y), and we just showed above that p2 | jp+kp.

We also know that 2z = jp + kp + (x+ y), and therefore p2 | z proving the theorem on

exponent p2.

5.3.1 An example where C1 works:

If a solution of FLT with p = 5 existed, then x, y, z have to be divisible

by 5. The theorem was generalized to other powers, and Sophie Germain

gave a general theorem which helped proving FLT for all prime numbers,

p < 100 in case 1. [10]

Germain’s work on FLT took years of research, most of it was solo, but she discussed

her results mostly with Gauss sporadically. We are back to the example p = 5 that we

discussed briefly earlier, but with a little more depth. So let’s take a look at case p = 5,

N = 1, and θ = 2Np + 1 = 2 · 1 · 5 + 1 = 11 and 1 ≤ N ≤ 10. The non-zero 5th
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power residues (mod 11) are: 15, 25, 35, 45, 55, 65, 75, 85, 95, 105

= 15, 25, 35, 45, 55, 65, 75, 85, 95, 105 (mod 11)

= 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000 (mod 11)

= 1, 10, 1, 1, 1, 10, 10, 10, 1, 10 (mod 11)

= 1, 10 (mod 11)

We see that the only 5th power residues modulo 11 are 1 and 10, and these two integers

are not consecutive. Hence θ = 2Np + 1 = 11 satisfies the C1 relative to 5. If we try

the same method for N = 2, 3, ..., 10, we get:

N = 2 involves (mod 21), but 21 is not prime.

N = 3 has 5th power residues 1, 5, 6, 25, 26, 30 (mod 31) and this set fails the non-

consecutive residue condition. In fact, it can be shown that the condition for non-

consecutive power residues will fail whenever N is a multiple of 3.

N = 4 has 5th power residues 1, 3, 9, 14, 27, 32, 38, 40 (mod 41) and this set has no

consecutive elements.

N = 5 involves (mod 51), but 51 is not prime.

N = 6 is a multiple of 3.

N = 7 has residues 1, 20, 23, 26, 30, 32, 34, 37, 39, 41, 45, 48, 51, 70 (mod 71) and this

set has no consecutive elements.

N = 8 involves (mod 81), but 81 is not prime.

N = 9 is a multiple of 3.

N = 10 has residues 1, 6, 10, 14, 17, 32, 36, 39, 41, 44, 57, 60, 62, 65, 69, 84, 91, 95, 100

(mod 101) and this set has non-consecutive elements.
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According to this example, the auxiliary primes that satisfyC1 for the 5th power residues

are: 11, 41, 71, and 101, corresponding to N = 1, 4, 7, and 10 and if 5 is not one of the

pth powers residues, then C2 is also satisfied. Germain stated in her theorem that if C1

and C2 are satisfied, then each one of 11, 41, 71, and 101 would have to divide either

x, y, or z. In other words, x, y, or z would have to each be multiples of at least one of

these auxiliary primes [8].

5.3.2 An example where C1 does not work:

We will still consider the prime p = 5, but now we are going to demonstrate the result

by choosing θ = 7. The 5th power residues (mod 7) are:

Table 3: 5th power Residues modulo 7

N N5 N5 (mod 7)

1 1 1
2 32 4
3 243 5
4 1024 2
5 3125 3
6 7776 6

In table 3, the 5th power residues modulo 7 are 1, 2, 3, 4, 5, 6. These integers are con-

secutive, hence θ = 7 does not satisfy C1 relative to 5 [2].

5.4 Sophie Germain’s pth power condition C2:

The second condition of Sophie Germain’s theorem is about whether the prime exponent

p itself is a pth power (mod θ) or not. We already discussed it’s implication as C2.
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5.4.1 Cubic Residues for p = 3 where θ = 13 and θ = 7:

The cubic residues where p = 3, is a special case where the only auxiliary primes (θ)

that satisfy the two conditions in Sophie Germain’s theorem are 7 and 13 according to a

letter that Germain sent Lagendre and it seems that she sent a short proof to Legendre.

They will be demonstrated by the example in the table below: [6]

Table 4: Cubic Residues

N N3 N3 (mod 13)

1 1 1
2 8 8
3 27 1
4 64 12
5 125 8
6 216 8
7 343 5
8 512 5
9 729 1

10 1000 12
11 1331 5
12 1728 12

If we look for the cubic residues (mod 13) from table 4 above, we get:

83 ≡ 512 (mod 13) ≡ 5 (mod 13)

C1 and C2 of Sophie Germain’s Theorem are met; the nonzero cubic residues 1, 5, 8, 12

modulo 13 are not consecutive, and 3 is not one of the residues, meaning that the equa-

tion xp + yp = −zp has no solutions for which x, y, and z are relatively prime to p,

where p does not divide x, y, or z. According to Germain, 7 and 13 are the only auxil-
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iary primes θ where FLT1 works for p = 3. Now for the auxiliary prime θ = 7 dividing

x, y, or z. Assume that 7 - x, y, or z:

x3 + y3 ≡ z3 (mod 7), a3 ≡ ±1 (mod 7),

13 ≡ 1 (mod 7), 23 ≡ 1 (mod 7),

33 ≡ −1 (mod 7), 43 ≡ 1 (mod 7),

53 ≡ −1 (mod 7), 63 ≡ −1 (mod 7),

±1 +±1 ≡ ±1 (mod 7)

Which is impossible and FLT1 holds for the auxiliary prime θ = 7 relative to p = 3 [6].

6 Theorem on large-sized solutions:

A theorem that she worked on to prove that any possible solution was infinite, ”so large

it frightens the imagination” [6, ]:

Theorem 4. For an odd prime p, if the equation xp + yp = zp is satified in integers,

then one of the numbers x+ y, z− x, or z− y must be divisible by p2p−1 and by the pth

power of all primes of the form 2Np − 1 which satisfy the two conditions: That there

aren’t two consecutive non-zero pth power residues (mod 2Np+ 1) and p is not a pth

power residue (mod 2Np+ 1) [6, p-42].

Germain’s claim in her key theorem would therefore suggest that for any solution to x5+

y5 = z5, then the numbers x+ y, z− x, or z− y must be divisible by 59(whichisp2p−1)

as well as by 115, 415, 715, and 1015 (which are the auxiliary primes of p = 5 raised to
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the 5th power). In other words, the numbers x+ y, z − x, or z − y must be divisible by

the product

59·115·415·715·1015 = 691, 053, 006, 763, 356, 095, 514, 121, 490, 614, 455, 078, 125.

This 39 digit number is a number whose size can frighten anyone [2]

6.1 Grand plan to solve FLT for the∞:

Germain went on to say in her letter to Gauss,

...I have never been able to arrive at the ∞, although I have pushed back

the limits quite far by a method of trials too long to describe here. I still

dare not to assert that for each value of p, there is no limit beyond which all

numbers of the form 2Np + 1 have two consecutive pth power residues in

the sequence of the natural numbers. This ... which concerns the equation

of Fermat.You can easily imagine, Monsieur, that I have been able to prove

that this equation is not possible except for numbers whose size ... because

it is also subject to many other conditions which I do not have the time to

list because of the details necessary for establishing its success. But all that

is still not enough; it takes the infinite and not just the very large. [6, p-23]

Here, Germain explained her grand plan to prove FLT. It requires finding an infinitely

many auxiliary primes each satisfying C1 for a given exponent p. She illustrated that

the existence of infinitely many auxiliary primes θ would make the Fermat’s equation

impossible.
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6.2 Failure of Germain’s Grand Plan:

Germain’s most desired grand plan and goal was to prove that for each odd prime ex-

ponent p, there is an infinte number of auxiliary primes of the form 2Np + 1 such that

the set of nonzero pth power residues satisfies C1 of her theorem. As mentioned above,

Germain observed that if there was such a solution to FLT, then any auxiliary prime

would have to divide x, y, or z. If that was the case and if x, y, and z were solutions to

Fermat’s equation for that exponent p, then each of the infinitely many auxiliary primes

must divide one of x, y, or z. Looking at the three subsets of auxiliary primes consisting

of those that divide x, those that divide y, and those that divide z, at least one of these

subsets must itself be infinite. But that would mean that one of the integers x, y, or z

would be a multiple of an infinite number of primes, which is impossible, and hence

Fermat’s equation could have no solutions for that exponent p. However, as Germain

admitted to Gauss, she was unable to establish the existence of an infinite number of

auxiliary primes.

“...I have never been able to arrive at the∞...” [6, p-23]

It was proven later that for each odd prime p there are only a finite number of auxiliary

primes that satisfy C1 which showed how Germain’s grand plan failed. On the other

hand, it appears that Germain knew of the reason for her grand plan failure because

at some point, she sent a letter to Legendre proving that for p = 3, there exists a fi-

nite number of auxiliary primes not an infinite number of them that satisfy C1. The

same results were acheived in this paper, some of auxiliary primes for a specific prime

exponents satisfied C1 and some ot them did not. Also, for the other examples, there

are many auxiliary primes, but only two of those could satisfy Germain’s conditions as
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when p = 3, only θ = 7, and θ = 13 satisfied Germain’s conditions.

This attempt to prove FLT for infinitely many prime exponents rather than on a case

by case basis was a brand new approach which revolutionalized the approach to prov-

ing FLT. Germain’s work and efforts made it possible for other mathematicians to keep

going and build the proof all through history after her all the way to Wiles.

7 Conclusion:

The subject of Sophie Germain’s contribution to mathematics is a vast one. The only

commonly known result of Germain’s approach appeared in 1825, as part of a sup-

plement to the 2nd edition of Legendre’s Theory of Numbers presenting his own

proof for p = 5 case along with part of Germain’s work, which he credited to her in a

footnote. This anonymity changed when manuscripts detailing her corespondence with

other mathematicians were discovered later. She was not a recognized mathematician

and even after her death, the epithet on her tombstone did not recognize her as a mathe-

matician. She died in 1831 at the age of 55 of breast cancer. She died shortly before she

was to receive an honorary doctor’s degree from the University of Gottingen under the

insistence of Gauss. The Italian mathmetician Libre wrote an intimate obituary for her

that also served as a biography. Germain taught herself everything she needed to be able

to correspond with the well-known mathematicians of her day. Determined, she battled

against the barriers created against women in her day. We know most of her proofs from

letters she sent her contemporary mathematicians like Lagrange, Legendre, and Gauss.

Legendre was the one who started her on the path of being recognized when he credited

to her what we now know as Sophie Germain Theorem which led to solving Fermat’s
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Last Theorem. The world of Cryptography benefited from what was discovered along

the journey to prove FLT building on Germain’s discoveries until Wiles in 1995 [11]. I

chose her work to focus on because she was a fighter and she did what she felt was right

even though the odds were against her, but she presisted and prevailed. Sophie Germain

became better known after her death as the case was with many brilliant people who

passed on unrecognized.
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