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Abstract

Several models have been proposed attempting to describe the mental lexicon—the

abstract organization of words in the human mind. Numerous studies have shown

that by representing the mental lexicon as a network, where nodes represent words

and edges connect similar words using a metric based on some word feature, a small-

world structure is formed. This property, pervasive in many real-world networks,

implies processing efficiency and resiliency to node deletion within the system, ex-

plaining the need for such a robust network as the mental lexicon. However, each

model considered a single word feature at a time, such as semantic or phonological

information. Moreover, these studies modeled the mental lexicon as an unweighted

graph. In this thesis, I expand upon these works by proposing a model that in-

corporates several word features into a weighted network. Analyses on this model

applied to the English lexicon show that while this model does not exhibit the same

small-world characteristics as a weighted graph, by setting a minimum threshold on

the weights (reminiscent of action potential thresholds in neural networks), the re-

sulting unweighted counterpart is a small-world network. These results suggest that

a more integrated model of the mental lexicon can be adopted while affording the

same computational benefits of a small-world network. An increased understanding

of the structure of the mental lexicon can provide a stronger foundation for more

accurate computational models of speech and text processing and word-learning.

Keywords: small world; mental lexicon; lexical network; graph theory
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Chapter 1

Introduction

When we read the word “bug,” we almost immediately recognize the word. Given

that this thesis is computer science-related, memories of programming errors may

have been evoked. General readers may have formed a mental image of a bug or

insect, perhaps an ant or a spider, noting it has several legs or antennae. For a

Danish speaker, this may have prompted visuals of a belly. The cursory reader may

have accidentally read the word as bog and have begun envisioning a mire or moss.

Regardless of the interpretation, the fact is that an isolated word has been accessed

instantaneously and has activated so many related concepts.

How do we recognize and retrieve words so quickly? Of course, an answer to this

would require a vocabulary “filing system” of some sort through which lexical ac-

cess takes place, which poses a more fundamental question: how do we store words

and concepts in our minds? This question has interested philosophers, linguists,

and computer scientists alike for decades and has brought about the concept of

the mental lexicon–the abstract organization of words in the mind. A deeper under-

standing of the mental lexicon can lead to more plausible and thorough explanations

of linguistic activities and phenomena, such as reading comprehension, speech pro-

cessing, and speech errors, as well as to more accurate and efficient computational

models for artificial intelligence systems mimicking natural language understanding

and production.

Recent technological advances and psycholinguistic experiments have made the

2



CHAPTER 1. INTRODUCTION 3

abstract concept a reality by allowing researchers to physically model the mental

lexicon as a complex network, leading to graph-theoretic analyses that reveal under-

lying properties exhibited by the network. These studies have effectively brought

us closer to a more complete model of the mental lexicon, but current models are

still far from complete. In this thesis, I seek to build upon these models as a nod

towards a more integrated model, incorporating features of each model, as well as

features previously explored only in psycholinguistic studies. I argue that such an

integrated model has a structure similar to previous models, thereby affording the

same computational benefits of those models, while more exhaustively including

findings from the literature pertaining to the mental lexicon.

The remaining chapters are laid out as follows: Chapter 2 discusses theoretical

models of the mental lexicon through the years and recent models analyzed using

graph-theoretic techniques (with a brief introduction to the relevant concepts from

graph theory), Chapter 3 introduces the integrated model I propose, as well as

justifications for each aspect of the model, Chapter 4 presents the main findings of

analyses over this proposed model, and Chapter 5 takes a closer look at the model

and the findings, along with its implications.



Chapter 2

Literature Review

2.1 Historical Development

2.1.1 The Hierarchical Network Model

An early model of the mental lexicon was presented by Collins and Quillian in

conjunction with developing a computational model for language comprehension,

known as the Teachable Language Comprehender (TLC) (Quillian, 1969; Collins and

Quillian, 1969). In this Hierarchical Network Model (HNM), words and concepts

are represented as nodes in a taxonomy with subclass and superclass relationships.

Each node also has properties corresponding to defining characteristics of the word.

However, each node does not contain all of its properties; rather, nodes contain only

the properties which distinguish them from their parents. This is to ensure minimal

storage of information. A simplified version of the HNM is given in Figure 1.

We see that items are organized in a tree structure, and each node has minimal

properties separating it from its parent. For example, while a canary can fly, this

follows from the fact that a canary is a bird; on the other hand, a canary must be

yellow, but a bird does not necessarily have to be. Collins and Quillian note that

while this scheme is space-efficient, it increases retrieval time for properties of a

word. For example, for a person to determine if a canary has ears, the person must

move up two levels in the hierarchy to access the has ears property of an animal.

4



CHAPTER 2. LITERATURE REVIEW 5

animal

bird

canary

dog

robin

has ears

can bark

dalmatian

can fly

has wings

is yellow

Figure 1: A sample hierarchy in the HNM
adapted from Collins and Quillian (1969)

To justify this decision, they tested human subjects, exploring the psychological

reality of the proposed differences in retrieval time. Collins and Quillian (1969)

set up a semantic verification task, wherein participants must decide whether or

not a statement such as “A canary is a bird” is true as quickly as possible (in

fact, psycholinguistic tasks such as this have remained a typical method of probing

the structure of the mental lexicon on the assumption that linguistic performance

is directly influenced by linguistic representation in the mind). According to the

structure of the HNM, a sentence such as “A canary is a bird” should be judged

correct more quickly than “A canary is an animal,” since the former requires ac-

cessing words only one edge apart, whereas the latter requires accessing words two

edges apart. Similarly, the model predicts that listeners should react to “A canary

is yellow” more quickly than to “A canary has ears,” as the former property is

readily accessible when the word “canary” is retrieved. Indeed, their findings are

consistent with the model’s prediction—on average, participants deemed sentences

relating words closer together in the hierarchy as correct more quickly than sentences

relating words farther apart.

While the HNM accounts for the experimental evidence Collins and Quillian

provided, the model’s predictions fail to account for results from several subsequent

studies. Loftus and Scheff (1971) carried out a study in which participants were

asked to assign three superclasses to each of fifty words. Given a word such as
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“collie,” the HNM would predict that the word would be more frequently assigned

to the “dog” superclass than the “animal” superclass, since “collie” is closer to

“dog” in the hierarchy than “animal.” Results were consistent with this prediction;

however, participants also more frequently listed “cantaloupe” as an instance of

a “fruit” than as an instance of a “melon,” even though “cantaloupe” would be

closer to the latter than the former. This inconsistency was found in categorizing

several other words, such as “chimpanzee” (“animal” over “primate”) and “drum”

(“musical instrument” over “percussion instrument”).

In light of these findings, Smith et al. (1973; 1974) gave semantic verification

tasks similar to those of Collins and Quillian to participants to see if these inconsis-

tencies are reflected in reaction times. Indeed, they found that, on average, sentences

such as “A collie is a dog” prompted faster judgment than “A collie is an animal,”

while sentences such as “A cantaloupe is a melon” elicited slower reaction times

than “A cantaloupe is a fruit.” The same general pattern was found for most of

the other sentences involving sets of words in Loftus and Scheff’s study that were

inconsistent with the HNM.

Even more counterevidence was provided by Rosch (1975). In one of several

experiments, participants were again presented with semantic verification tasks.

However, instead of testing different superclasses of a word for changes in average

reaction time, Rosch varied the instances of a superclass. In the pair of sentences

“A cat is an animal” and “A dog is an animal,” Collins and Quillian’s model would

predict that roughly equal reaction times would be elicited, since both a “dog” and

a “cat” are presumably on the same level of the hierarchy compared to “animal.”

In this case, results showed that the model’s prediction was correct. However, con-

sider now the pair of sentences “A canary is a bird” and “A penguin is a bird.”

Again, the HNM predicts equal reaction times, but Rosch found a significant differ-

ence in average reaction times—participants judged a “canary” to be a “bird” more

quickly than a “penguin” to be a “bird.” Rosch proposes that since a “penguin”

is a less typical “bird” compared to a “canary,” the connection between “bird” and

“penguin” is weaker than the connection between “bird” and “canary,” thereby in-
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creasing processing time. Slower reaction times were also elicited for more atypical

instances of a category, suggesting that lexical access is sensitive to typicality ef-

fects—the phenomenon in which more typical members of a category (or subclasses

of a word) are more readily accessible than less typical members.

2.1.2 The Spreading Activation Model

To address these shortcomings, Collins and Loftus (1975) proposed a Spreading Ac-

tivation Model (SAM). An extension to the original HNM, this model assumes a

complex network of concepts connected by various types of relationships with vary-

ing degrees of strength. A sample subnetwork of the SAM is depicted in Figure 2,

where the strength of the relationship between two concepts is reflected in the length

of the edge connecting the concepts (shorter edges indicate stronger relationships).

The strength of a relationship is determined by the number of shared properties

between two concepts, where each property is itself a concept and therefore a node.

Furthermore, the more frequently a concept is used by a speaker, the stronger the

connections become between the concept and its properties.

In addition to a conceptual semantic network, Collins and Loftus also incor-

porated into the SAM a lexical network where the phonological and orthographic

properties of words are stored. The nodes in the semantic network are abstract in

the sense that they are nameless concepts; the actual names that speakers assign

to concepts as they are pronounced and written lie in the lexical component of the

SAM. The nodes in the lexical network are connected with strengths according to

phonological and orthographic similarity, i.e., by how similar two words sound or

look.

The name of the model derives from the proposed manner of processing over the

network. When a word is “activated”—read, heard, or thought about—activation

spreads to neighboring nodes, which in turn spreads to nodes neighboring those

nodes, and so on. The activation is likened to a signal whose strength attenuates as

it travels outward from the source node, where the decrease in strength is inversely

proportional to the strength of each connection, i.e., the weaker the connection
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Figure 2: A sample subnetwork of the SAM
reproduced from Collins and Loftus (1975)

between two nodes is, the more the signal strength weakens as it passes from the first

node to the second. Thus, when a concept is retrieved, properties and other concepts

that are strongly connected to the activated concept are more easily accessed.

This SAM therefore accommodates the counterevidence for the HNM discussed

in the previous section. Words that are used more frequently have stronger connec-

tions, so neighboring concepts or properties (which do not necessarily have to follow

a strict hierarchy) can be accessed more quickly than others. Thus, since “canary”

is a more typical example of a “bird” than “penguin,” the SAM now predicts that

“A canary is a bird” should be responded to more quickly than “A penguin is a

bird.”

In addition to addressing the aforementioned issues, Collins and Loftus also use

the SAM to attempt to account for the familiar “tip of the tongue” (TOT) phe-

nomenon. Brown and McNeill (1966) first studied the effect by asking participants



CHAPTER 2. LITERATURE REVIEW 9

to recall low-frequency words given their definitions, and it was found that when

the participants were not able to completely retrieve a word, they were still able

to recall the number of syllables, the initial letter, and the location of the primary

stress of the target word with high accuracy. This suggests that words in the mental

lexicon are also partially organized by their phonological structures, an organization

reflected in the lexical network component of the SAM.

Another psychological effect the SAM can provide an explanation for is lexical

priming, in which exposure to one word influences the response towards a related

word. Meyer and Schvaneveldt (1971) first studied priming effects through a lexical

decision task, which requires a participant to determine whether or not a word is

indeed a word. In their study, subjects were visually presented two words (each of

which was either a real English word or a non-word which resembled an English

word) and were asked to judge the validity of the word as quickly as possible. It was

found that when the two words had a semantic association, participants deemed the

words as real English words more quickly than when the two words had no obvious

association. For example, participants displayed a significantly quicker reaction time

to the pair “nurse” and “doctor” than to the pair “nurse” and “butter.” This was

evidence of semantic priming, since exposing the subject to one word decreased

reaction times in responding to a semantically-related word. Meyer et al. (1974)

also provided evidence for phonological priming in a similar lexical decision task,

in which participants responded more quickly to similar-sounding word pairs such

as “bribe” and “tribe” than to arbitrary word pairs such as “bribe” and “hence.”

In terms of the SAM, these priming effects are explained by the fact that when

the participant reads the first word, the word is activated in the mental lexicon.

This word presumably has strong connections with semantically- and phonologically-

related words, so these related words immediately become activated, allowing the

participant to more quickly access and judge the second word presented if the second

word is related to the first word.

Despite the amount of psycholinguistic evidence the SAM can now account for,

the model is still incomplete as it does not consider the morphological and syn-
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tactic properties of words. A morpheme is generally defined as the smallest unit

of meaning, ranging from words to prefixes and suffixes. For example, the word

“submit,” the prefix “re-,” and the suffix “-ing” are single morphemes, and the

word “resubmitting” is composed of three morphemes. Syntactic properties of a

word can include its part of speech (e.g., noun, verb, or adjective) or, in other lan-

guages such as French, its grammatical gender. Fromkin (1973) argued that speech

errors provide evidence for the storage of morphological and syntactic (as well as

phonological and semantic) properties of words. One type of speech error is a word

exchange, in which two words in the intended utterance are switched. An example

of this is saying “Seymour sliced the knife with a salami” instead of the intended

“Seymore sliced the salami with a knife.” Fromkin found that when these word

exchanges occurred, the switched words were generally the same parts of speech. In

the previous example, the exchanged words are both nouns. This shows that the

mental lexicon incorporates syntactic features to some extent. Furthermore, when

the word exchange error occurred between words of different parts of speech, the

words were transformed to ensure the grammatically of the utterance. An exam-

ple of this is saying “I think it is careful to measure with reason” instead of the

intended “I think it is reasonable to measure with care.” Although the words that

are exchanged are “care” and “reason,” the appropriate suffixes were added and re-

moved to produce a grammatical English sentence, demonstrating a morphological

component in the mental lexicon. Fromkin also provided evidence for the storage of

phonological properties through phoneme exchanges such as “a darn bore” instead

of “a barn door,” also known as spoonerisms, and semantic properties through word

substitutions such as “blond eyes” instead of “blond hair,” where the substituted

word is generally semantically-related to the intended word. The SAM can account

for these errors, but it provides no explanation for the word exchange errors.

2.1.3 The Revised Spreading Activation Model

In response, Bock and Levelt (1994) developed the more complete Revised Spreading

Activation Model (RSAM). The RSAM features three levels of nodes: the conceptual
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level, which contains words as nodes connected in a similar fashion to the SAM, the

lemma level, which contains the syntactic information of words, and the lexeme level,

which contains the phonological and morphological information of words. Bock and

Levelt specify that in the lemma level, syntactic information can include the gender

of a word, the part of speech of a word, or the frame of a verb—for example,

the verb “put” requires a subject, a direct object, and a prepositional object, e.g.,

“He [subject] put the money [direct object] on the table [prepositional object].” A

subnetwork of the RSAM is given in Figure 3.

Figure 3: A sample multi-level subnetwork of the
RSAM reproduced from Bock and Levelt (1994)

As the name implies, processing over the network is still through spreading

activation, but the model provides three interactive levels to account for as many

word features as possible. In Section 2.3, I discuss how researchers have separately

explored each of these levels using graph-theoretic analyses.
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2.2 Graph Theory 101

Before further discussing models of the mental lexicon as complex networks, I in-

troduce some concepts and techniques from the field of graph theory relevant to

analyzing the structures of the models.

2.2.1 Basic Definitions

A graph (or network) G is the pair (V (G), E(G)), where V (G) is the set of vertices

(or nodes), and E(G) is the set of edges of the graph. Instead of V (G) and E(G),

V and G will sometimes be used when the context makes clear which graph V

and E refer to. The order of the graph G is |V |, the number of vertices. For two

vertices u and v, we write the edge connecting u and v as (u, v), and if (u, v) ∈ E,

then we say that u and v are adjacent and are neighbors. Note that, despite the

ordered-pair notation, (u, v) refers to the same edge as (v, u). The neighborhood of

v, denoted N(v), is the set of all neighbors of v, and the number of elements in the

neighborhood of v is the degree of v, deg(v). As an example, consider the graph G

a

b

c

d

e

f

g

k

i

h

j

Figure 4: A sample graph G

in Figure 4. Vertices of G include a and h, while edges include (a, b) and (h, i). The

vertices c and d are adjacent and are neighbors, and N(c) = {b, d, f}, so deg(c) = 3.

We define a path in a graphG as a finite sequence of distinct vertices v1, v2, . . . , vn
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such that each (vi, vi+1) ∈ E for i = 1, 2, . . . , n − 1. Note that we exclude infinite

paths from the definition for the sake of simplicity. We also define the length of a

path P as the number of edges P is composed of. A closed path, or a cycle, is a path

in which the starting and ending vertices of the path are the same. The shortest

path between two vertices u and v is then the path of minimal length with u and v

as endpoints. We denote the length of the shortest path between vertices u and v

as d(u, v). For the sake of completeness, we let d(u, u) = 0 for all vertices u ∈ V .

Furthermore, if there exists no path between u and v, then we say that d(u, v) =∞.

Referring back to Figure 4, a path between vertices f and a is f, c, b, a, containing

edges (f, c), (c, b), and (b, a). The length of this path is then 3, and we see that this

path is also the shortest path between f and a (as opposed to the path f, d, c, b, a).

The path c, d, e, f, c is a closed path of length 4.

A graph is said to be connected if there exists a path between every pair of

vertices in the graph; otherwise, the graph is disconnected. A subgraph of a graph G

is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). A (connected) component

of a graph is a maximally-connected subgraph of the graph, i.e., the addition of

any other vertex in the graph to the component will not retain the component’s

connectedness. In Figure 4, G is disconnected with two components. The vertices

{c, d, f} and the edges {(c, d), (d, f), (c, f)} make up a subgraph of G. The vertices

{a, b, c, d, e, f} together with the edges joining them form a component of G.

Some families of graphs arise so often in graph theory that they are given special

names. A complete graph (of order n), denoted Kn, is a graph in which every pair

of vertices is adjacent. A regular graph (of order n and common degree k), denoted

Rn,k, is a graph in which every vertex has the same degree. A cycle graph (of order

n), denoted Cn, is a graph in which the n vertices are connected in a cycle. Note

that Rn,n−1 = Kn and Cn = Rn,2. Examples of each of these types of graphs is

given in Figure 5.

A weighted graph (or weighted network) is a graph G = (V (G), E(G)) in which

every edge of the graph has a weight (some real number) associated with it. In

this case, we write the edge between two vertices u, v ∈ V with weight w ∈ R as
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a

b

cd

e

(a) K5

a

b

cd

e

(b) C5

a b

c

de

f

(c) R6,4

Figure 5

(u, v, w) ∈ E. For a weighted graph, the length of a path between u and v can be

defined as the sum of all weights associated with each edge of the path. In real-world

networks, these weights can represent the distance between two cities, the cost to

build a connection between two objects, the strength of a connection, etc. Figure

6 gives an example of a weighted graph G. Examples of edges in G are (b, c, 1.24)

and (i, k, 1). Some definitions for unweighted graphs, such as the degree of a vertex

or the shortest path length, have no exact parallel for weighted graphs, so alternate

formulations that have been proposed in the literature will be presented as needed

in the next few sections.

a

b

c

d

e

f

g

k

i

h

j

1.24
3.18

1
2

0.5

1.99

9
8 1

0.75

2.11

Figure 6: A sample weighted graph G
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2.2.2 Graph-Theoretic Measures

There are two main measures for (unweighted) graphs from graph theory used in

the discussion of the mental lexicon (and in many real-world networks): the average

shortest path length and the clustering coefficient. There is also the notion of the

average degree of a graph, denoted 〈k〉, which is simply the arithmetic mean of the

degrees of every vertex, or

〈k〉 =
1

|V |
∑
v∈V

deg(v).

However, this measure is used more as a means for calculating other measures rather

than a comparative measure (discussed in the next section).

The average shortest path length L of a graph G of order n is the arithmetic

mean of the lengths of the shortest paths between every ordered pair of distinct

vertices in V , or

L =
1

n(n− 1)

∑
u,v∈V

d(u, v).

Note that the average shortest path length is only reasonable for connected graphs,

since if there exists no path between vertices u and v, d(u, v) = ∞, so for discon-

nected graphs, we sometimes only consider the largest connected component of the

graph, i.e., the component of greatest order in the graph. Intuitively, the average

shortest path length of a graph characterizes how “easy” it is to travel from one

vertex to another. In Figure 7, the length of the shortest path between a and b is

1, the length of the shortest path between a and c is 2, and so on. The sum of the

lengths of the shortest paths between each pair of distinct vertices is 56. Since there

are 6 · 5 = 30 possible ordered pairs of distinct vertices, the average shortest path

length of G is 56/30 ≈ 1.87. This means that, on average, we must travel roughly

2 edges to get from one vertex to any other vertex in G.

The local clustering coefficient Cv of a vertex v in a graph G is defined as the

ratio of the number of edges that exist among the neighborhood of v to the number
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Figure 7: A sample connected graph G

of possible edges that could exist among the neighborhood of v, or

Cv =
|{(w, x) ∈ E | w, x ∈ N(v)}|(

deg(v)
2

) .

If deg(v) < 2, then we assign Cv = 0. This measure was first introduced by Watts

and Strogatz (1998). An equivalent method of computing the local clustering coef-

ficient of a vertex is to replace the numerator with the number of triangles through

the vertex, since a triangle through the vertex exists when two neighbors of the

vertex are adjacent. The (average) clustering coefficient C is simply the arithmetic

mean of the local clustering coefficients for each vertex in a graph G of order n, or

C =
1

n

∑
v∈V (G)

Cv.

Since the denominator of Cv is the total number of possible edges, 0 ≤ C ≤ 1.

Generally, the clustering coefficient is only calculated for connected graphs; however,

it may be extended to any graph regardless of connectivity, since isolated vertices

(vertices of degree 0) simply have a local clustering coefficient of 0. Intuitively, the

clustering coefficient characterizes how “tightly-knit” a graph is. In the context of

social networks, this may also be thought of as answering the question, “How likely

is it that a friend of a friend is also my friend?” In Figure 7, vertex d has three

neighbors: c, f , and e. Among these neighbors, only the two edges (c, f) and (e, f)
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exist. However, in a neighborhood of three vertices, there could potentially be up to(
3
2

)
= 3 edges, so Cd = 2/3. We could also see that there are two triangles through

d, one with vertices c, d, f and one with vertices d, e, f , so we again have Cd = 2/3.

Performing this same calculation for each vertex in G and taking the average, we

find that C = 4/9.

For comparison, consider K5, the complete graph of order 5. For any vertex in

K5, every vertex in its neighborhood is adjacent to each other, so the local clustering

coefficient for that vertex would be 1. Taking the average over every vertex, the

clustering coefficient of K5 is 1. On the other end of the spectrum, consider C5,

the cycle graph of order 5. Each vertex has two neighbors that are not adjacent to

each other, so the local clustering coefficient of each vertex is 0, making the average

clustering coefficient 0.

Several counterparts of these two measures for weighted graphs have been pro-

posed. For the following definitions, let wuv denote the weight of the edge joining

vertices u and v. If u and v are not adjacent or if u = v, let wuv = 0. When

considering the shortest path between two vertices in weighted graphs, it is neces-

sary to specify the significance of the “shortest” path. For example, in a weighted

network where nodes represent cities and weights on edges represent distances be-

tween cities, it is natural to define the shortest path between two vertices to be the

path whose edge weight sum is minimal. However, in a weighted network where

the nodes represent scientists and weights on edges represent the number of papers

of which both scientists are co-authors, we might imagine that the more papers

they have collaborated on, the stronger the connection between the scientists. An

“optimal” path between two scientists might then be one in which the sum of the

edge weights is maximal—in some sense, the “strongest” path between the two sci-

entists. In these cases when edge weights represent strengths rather than physical

distances, Newman (2001a) defined the distance between two adjacent vertices as

the (multiplicative) inverse of the weight of the edge joining the two vertices. The

weighted shortest path between two vertices is then the path in which the sum of

the distances is minimal. Then, if the weighted shortest path between vertices v1
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and vn is v1, v2, . . . , vn, the weighted shortest path length d′(v1, vn) is defined as

d′(v1, vn) =

n−1∑
i=1

1

wvivi+1

.

Again, we let d′(v, v) = 0 for every vertex v, and d′(u, v) =∞ if there does not exist

a path between vertices u and v. The weighted average shortest path length L′ in a

(connected) weighted graph of order n then follows as before:

L′ =
1

n(n− 1)

∑
u,v∈V

d′(u, v).

This definition of the weighted average shortest path length has also been supported

and utilized by Li et al. (2007) and a slight variant called average efficiency by

Latora and Marchiori (2003).

The local clustering coefficient has a less natural extension to weighted graphs,

so many different formulae for many different applications have been proposed.

Barrat et al. (2004) were the first to propose a weighted local clustering coefficient

(WLCC)—in the context of analyzing a scientific collaboration network and a world-

wide air-transportation network—that involves the notion of the strength of a node,

a counterpart to the degree of a node. For a weighted graph G, the strength s(v) of

a node v ∈ V is defined as the sum of the weights of the edges from that node, or

s(v) =
∑

u∈N(v)

wuv.

Then the WLCC for vertex v proposed by Barrat et al., denoted C ′v,B, is given by

C ′v,B =
1

s(v)(deg(v)− 1)

∑
u,x∈N(v)

wuv + wxv

2
aux,

where aux = 1 if vertices u and x are adjacent and 0 otherwise. This definition looks

at adjacency among the neighbors of v while taking into account the weights on the

edges with v as an endpoint, scaled against the total strength of v. Another version
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of the WLCC for a vertex comes from Onnela et al. (2005), which considers all of

the weights in the triangles through the vertex, rather than just the weights on the

edges with the vertex as an endpoint. Let ŵuv denote the weight wuv normalized

by the maximum weight among all edges of the graph, i.e.,

ŵuv =
wuv

max({w ∈ R | (u, v, w) ∈ E})
.

Then the WLCC for a vertex v proposed by Onnela et al., denoted C ′v,O, is defined

as

C ′v,O =
1

deg(v)(deg(v)− 1)

∑
u,x∈N(v)

3
√
ŵuvŵxvŵux.

Note that while C ′v,B uses the arithmetic mean, C ′v,O uses the geometric mean, which,

as Fleming and Wallace (1986) have shown, is an appropriate mean for normalized

measurements. Onnela et al.’s WLCC was developed for the analysis of financial

and metabolic networks. Zhang and Horvath (2005) formulated another WLCC for

a vertex v, denoted C ′v,Z , using weights normalized by the greatest weight of the

graph:

C ′v,Z =

∑
u,x∈N(v)

ŵuvŵxvŵux∑
u,x∈N(v)

u6=x

ŵuvŵxv

.

The application of this WLCC was to gene co-expression networks. Finally, Holme

et al. (2007) proposed their definition of a WLCC similar to C ′v,Z , but in the context

of a Korean university affiliation network. Instead of normalizing each of the weights

by the maximal weight of the graph, C ′v,H , the WLCC of a vertex v according to

Holme et al., is defined as

C ′v,H =
1

M
·

∑
u,x∈N(v)

wuvwxvwux∑
u,x∈N(v)

wuvwxv

,

where

M = max({w ∈ R | (u, v, w) ∈ E}).
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For all of these definitions, the various (average) weighted clustering coefficients

(C ′B, C
′
O, C

′
Z , C

′
H) of a graph would simply be the arithmetic mean of the respective

WLCC of each vertex. Each of these WLCC proposals has been developed in differ-

ent contexts, and no objective method for determining the “best” definition has been

created. However, Saramäki et al. (2007) have summarized the different WLCCs by

comparing several features of each WLCC. This comparison is reproduced in Table

8.

Feature C′
B C′

O C′
Z C′

H

Is the same as C when weights become binary X X X
Is a value between 0 and 1, inclusive X X X
Uses maximal weight of graph in normalization X X X
Considers weights of all edges in triangles X X
Invariant to weight permutations within a triangle X
Considers weights of edges not in any triangles X X X

Table 8: Comparison of different WLCCs
reproduced from Saramäki et al. (2007)

2.2.3 Random Graphs

When studying networks, it is sometimes necessary to have benchmark calculations

against which to compare measures in the network. Many researchers have turned

to random graphs for these benchmarks, comparing their networks against a random

network with the same number of vertices and approximately the same number of

edges.

The birth of the study of random graphs is attributed to Erdős and Rényi (1959).

They defined a random (unweighted) graph of order n to be a graph in which each

of the
(
n
2

)
possible edges is added with probability p and proved several properties

of these graphs. In this scheme, if p = 0, then the graph is empty, while if p = 1,

then a complete graph is formed. Moreover, the expected number of edges is
(
n
2

)
p,

and the expected average degree is (n − 1)p. As far as the average shortest path

length L and clustering coefficient C of random graphs, Chung and Lu (2001) have

formally shown that for most values of p, L can be approximated by ln(n)/ ln(np).
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Albert and Barabási (2002) gave an informal argument for this approximation of L

for random graphs, and Fernholz and Ramachandran (2007) provided a more exact

approximation for random graphs with certain properties. Albert and Barabási

(2002) also showed that C for a random graph in which each edge was added with

probability p can be approximated by p, since the probability that two neighbors of

a vertex are adjacent is exactly the probability that any two vertices are adjacent.

Watts and Strogatz (1998) presented another method of creating random (un-

weighted) graphs. Starting with a regular graph of order n, each edge of each vertex

is “rewired,” i.e., a different neighbor for the vertex is chosen, with probability p if

the rewiring would not create a repeated edge. Note that p is the probability of a

rewiring occurring; the new neighbor is chosen uniformly from the n − 1 possible

vertices (a vertex cannot be adjacent to itself). A reproduced example is given in

Figure 9, depicting an R20,4 graph (p = 0) on the left, a completely rewired graph

(p = 1) on the right, and a graph generated with an intermediate value of p in the

center. Watts and Strogatz used this technique to be able to study random graphs

with different amounts of “randomness,” where values of p closer to 0 would corre-

spond to nearly regular graphs, while values of p closer to 1 would correspond to a

nearly completely random graphs. It was then shown that as p approaches 1, the

shortest average path length becomes better approximated by ln(n)/ ln(〈k〉), and

the clustering coefficient becomes better approximated by 〈k〉/n.

Figure 9: Examples of graphs generated using Watts and
Strogatz’s (1998) technique, reproduced from the same source
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In Erdős and Rényi’s (ER) random graphs, the expected average degree is (n−

1)p, which, for large values of n, can be approximated to np. Then for ER random

graphs, the average path length is approximately ln(n)/ ln(np) = ln(n)/ ln(〈k〉),

and the clustering coefficient is approximately p = 〈k〉/n. Thus, roughly the same

results have been found for these different definitions of random graphs. These

formulae for L and C that do not involve p become important when comparing real-

world networks to random graphs. An appropriate comparison would require the

real-world network and the random graph to have approximately the same number

of edges, which is roughly proportional to the average degree of a graph. The

formulae allow for calculations of L and C for random graphs when the value of p is

unknown but when the value of n and 〈k〉 are known. Moreover, since the value of

p has different meanings in each formulation of a random graph, using n and 〈k〉 to

approximate L and C keep the results consistent across models. The need for these

formulae will become apparent in the next section.

While much research has been done on unweighted random graphs, little work ex-

ists on their weighted counterparts. Garlaschelli (2009) proposed a weighted random

graph model in which each edge is added and assigned a weight w with probability

pw(1− p). Since two non-adjacent vertices essentially have a weight of 0, the prob-

ability that any two vertices are non-adjacent is p0(1 − p) = 1 − p, which implies

that the probability that any two vertices are adjacent is 1 − (1 − p) = p. Thus,

Garlaschelli’s weighted random graphs parallel ER random graphs. Garlaschelli also

showed that when using this weighted random graph model as a benchmark against

which to compare a real-world weighted network of order n and total edge weight

sum W , choosing

p =
2W

n(n− 1) + 2W

creates a weighted random graph that serves as an appropriate reference for the

real-world network. If the average weight 〈w〉 of a graph—the arithmetic mean

of all weights in the graph—is considered instead of W , this choice of p may be

approximated as 〈w〉/(〈w〉+ n), which is reminiscent of the appropriate choice of p
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for ER random graphs.

Garlaschelli’s model only considered integer-valued weights, and no estimation

of the weighted average shortest path length or the weighted clustering coefficient

for these weighted random graphs was given. Li et al. (2007) utilized an ad hoc

method of generating a weighted random graph for comparison against real-world

weighted networks. By randomly redistributing the edge weights of a real-world

network, a corresponding weighted random graph is formed with the same number

of vertices and average weight. No formal model was proposed, so no derivations of

L′ and C ′ were given, but L′ and C ′ were empirically found by generating a random

graph with this method and using Newman’s (2001a) definition of L′ and Onnela et

al.’s (2005) version of C ′. Although Garlaschelli’s model has received more attention

due to its formal description, there is no comparative source which can determine

the objectively better definition of a weighted random graph.

2.2.4 Small-World Graphs

We have all more than likely experienced the small-world effect at one point or

another when we meet someone new who happens to be a friend of a friend or when

we run into someone we know at an unexpected place. Milgram (1967) was one of

the first to investigate this phenomenon and set out to answer the question, “Given

any two people in the world, how many intermediate acquaintance links are needed

before the two people are connected?” Milgram’s experiment involved giving a group

of people documents asking if they knew a certain target person (from a group of

target people living outside of the state). If a participant knew the target person

personally, Milgram was informed; otherwise, the participant was asked to pass the

message along to someone who would be more likely to know the target person, and

the chain would continue until the target person was reached. From this, Milgram

was able to construct a “who knows who” graph and found that, on average, it

required roughly six people to reach the target person. This lends credence to the

popular expression “six degrees of separation.”

Watts and Strogatz (1998) extended the “small-world” concept to real-world
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(unweighted) networks and coined the term small-world networks. They analyzed

three networks: the collaboration graph of actors in popular movies, the electrical

power grid of the western United States, and the neural network of the nematode

worm C. elegans. By calculating L and C for each of these graphs, it was found that

these networks had high clustering and short average path lengths. As previously

discussed, random graphs provide a reasonable reference against which real-world

networks can be compared to find the significance of different properties. Watts and

Strogatz used the approximations of L and C for random graphs to define a small-

world network as one in which the average shortest path length is roughly the same

as that of a random graph, but the clustering coefficient is much greater than that

of a random graph. There is no standard measure for “much greater,” but many

researchers have used this definition of small-world networks to show its appearance

in many real-world networks. Furthermore, to characterize “roughly the same” for

average shortest path lengths, Watts and Strogatz also note that for regular graphs

(which, in their method of random graph generation, is on the opposite end of the

spectrum from a completely random graph), L = n/(2〈k〉). The average shortest

path length of a small-world network should then be significantly closer to that of

a random graph than that of a regular graph. The results of Watts and Strogatz’s

analysis are given in Table 10; for each network, the number of vertices, the average

degree, the average shortest path length, and the clustering coefficient, alongside

the estimated average shortest path length and clustering coefficient for random

graphs given the values of n and 〈k〉, denoted Lrand and Crand, respectively, as well

as the average shortest path length of a regular graph with the same order and

average degree, denoted Lreg. It can be seen, then, that each of the networks has

the defined properties of a small-world network. Watts and Strogatz note that this

small-world characteristic is important to a network because in dynamical systems,

this structure affords enhanced signal-propagation speed and computational power.

Also listed in Table 10 are the findings of several other researchers that demon-

strate small-world networks in various real-world networks. Adamic (1999) exam-

ined the World Wide Web at the site level as a network in which nodes represented
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Network Order 〈k〉 L Lrand Lreg C Crand

Actor collaboration 225,226 61 3.65 2.99 1,846 0.79 2.7× 10−4

(Watts and Strogatz, 1998)

Power grid 4941 2.67 18.7 12.4 925.3 0.080 0.005
(Watts and Strogatz, 1998)

C. elegans 282 14 2.65 2.25 10.07 0.28 0.05
(Watts and Strogatz, 1998)

WWW 153,127 35.21 3.1 3.35 2,174 0.1078 2.3× 10−4

(Adamic, 1999)

LANL co-authorship 52,909 9.7 5.9 4.79 2,727 0.43 1.8× 10−4

(Newman, 2001b)

MEDLINE co-authorship 1,520,251 18.1 4.6 4.91 41,996 0.066 1.1× 10−5

(Newman, 2001b)

SPIRES co-authorship 56,627 173 4.0 2.12 163.7 0.726 0.003
(Newman, 2001b)

NCSTRL co-authorship 11,994 3.59 9.7 7.34 1,670 0.496 3.0× 10−4

(Newman, 2001b)

Ythan Estuary food web 134 8.7 2.43 2.26 7.70 0.22 0.06
(Montoya and Solé, 2002)

Silwood Park food web 154 4.75 3.40 3.23 16.21 0.15 0.03
(Montoya and Solé, 2002)

Table 10: The shortest average path length L and the clustering
coefficient C of various real-world networks compared to the

same measures on corresponding random graphs

sites, and two nodes were adjacent if some page in one site pointed to some page in

the other site. Newman (2001b) analyzed co-authorship graphs in several different

scientific databases: LANL (preprints in theoretical physics), MEDLINE (published

papers in biomedical research), SPIRES (published papers and preprints in high-

energy physics), and NCSTRL (preprints in computer science). In these networks,

nodes represented authors, and two nodes were adjacent if the two authors appeared

as co-authors on a paper. Montoya and Solé (2002) studied food webs of the Ythan

Estuary in Scotland and Silwood Park in England and represented them as networks

in which nodes signified species and edges indicated a predator-prey relationship.

In their analysis, Montoya and Solé calculated Lrand and Crand by generating over

200 random graphs with the same average degree as the food webs and taking the

average values of the average shortest path length and the clustering coefficient of

those random graphs. The results from each of these studies show that small-world

networks exist in a variety of contexts, from neurological to ecological to sociolog-

ical. Small-world networks have also been found in models of the mental lexicon,
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which will be discussed in Section 2.3.

Because more attention has been given to studying small-world networks in

unweighted graphs, there exist few results for weighted networks. The definition

of a small-world network can easily be extended to weighted networks: a weighted

small-world network should have approximately the same weighted average shortest

path length and a significantly larger weighted clustering coefficient as those of a

comparable weighted random graph. However, this definition encounters problems

in practice: since there is no consensus on a “comparable” weighted random graph

or an appropriate measure of the weighted clustering coefficient, there is currently no

standard method of finding small-world networks in real-world weighted networks.

Li et al. (2007) analyzed two collaboration networks from the LANL database—

subnetworks of the LANL network in Newman’s (2001b) study that include only

papers in astrophysics and condensed matter physics. Again, the nodes in these

networks represent authors, and edges indicate that two authors have collaborated

on a paper. Weights were assigned based on a method developed by Newman

(2001a); the weight between two scientists i and j is given by

wij =
∑
k

δki δ
k
j

nk − 1
,

where nk is the number of authors of paper k, and δki is 1 if scientist i was a coauthor

of paper k and 0 otherwise. In this definition, the fewer authors there are on a paper,

the stronger the weight between the authors, since, presumably, collaborators have

a stronger relationship with each other and spend more time together when there

are not as many other collaborators on a paper. As discussed in Section 2.2.3,

Li et al. calculated the weighted average shortest path length L′ using Newman’s

(2001a) method and Onnela et al.’s (2005) weighted clustering coefficient C ′. They

generated weighted random graphs by redistributing weights on a corresponding

network of equal order and calculated the same measures using the same methods

on these random graphs, respectively L′rand and C ′rand. Table 11 gives the results

of the analysis of each network, showing that both have high clustering and short
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average path length by the chosen definitions.

Network Order L′ L′
rand C′ C′

rand

Astrophysics 16,706 247.84 182.54 0.016 1.0× 10−5

Condensed matter physics 16,726 265.12 276.98 0.017 8.6× 10−6

Table 11: Results from Li et al.’s (2007) analysis of weighted collaboration
networks

Latora and Marchiori (2003) have also analyzed weighted neural, social, commu-

nication, and transportation networks; however, they proposed different measures

for analysis over the traditional average shortest path length and clustering coeffi-

cient. Latora and Marchiori formally defined the efficiency, divided into global and

local, and the cost of a network to show that these networks exhibited an economic

small-world behavior—the networks had high global and local efficiency and low

cost, whereas random networks (generated in a manner similar to Watts and Stro-

gatz’s (1998) rewiring procedure) could not achieve the same efficiency without a

high cost.

2.3 Small-World Structures in the Mental Lexicon

Since small-world networks have been observed in several different fields, and since

the mental lexicon has generally been accepted to be best represented by a network

(as in the SAM or the RSAM), researchers have naturally attempted to find similar

structures in models of the mental lexicon. Recall that the RSAM includes three

inter-connected levels, where each level contains nodes connected by different types

of similarity, i.e., the conceptual level by semantic similarity, the lemma level by

shared syntactic properties, and the lexeme level by phonological similarity. Re-

searchers have successfully utilized these different kinds of similarity to probe each

level separately in search of small-world structures. In this section, I discuss various

models of the mental lexicon that have been analyzed in the literature. Exact results

for these studies are presented in Section 2.3.5.
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2.3.1 Phonological Similarity

Vitevitch (2008) built and analyzed an unweighted phonological network ; nodes rep-

resented English words (taken from the 1964 Merriam-Webster Pocket Dictionary),

and two nodes were connected if they formed a minimal pair, i.e., the two words

differed by exactly one sound (also called a phoneme). Note that this does not imply

a difference of one letter between two words, as English letters do not correspond

to strictly one sound, and a combination of letters can form one sound, e.g., “ch.”

Examples of minimal pairs are “bat” and “cat,” “bat” and “chat,” and “bat” and

“beat”; a counterexample is “bat” and “bar.” A sample phonological subnetwork is

given in Figure 12. By taking the largest connected component of the phonological

network, which encompassed 6,508 nodes, Vitevitch found a small-world structure

with high clustering and a short average shortest path length.

Arbesman et al. (2010) also modeled the mental lexicon as a phonological net-

work, but considered languages other than English in diverse language families:

Spanish, Mandarin, Hawaiian, and Basque. The analysis of these networks differed

from that of English in that, while the average shortest path length was computed

only for the largest connected component, the clustering coefficient was computed

for the entire network. An appropriate random network for comparing clustering

coefficients then had the same order as the entire network, while an appropriate

random network for comparing average shortest path lengths had the same order

as the largest connected component. Furthermore, the average shortest path length

was computed by taking a random sample of 1000 nodes out of the largest con-

nected component rather than over the entire component. Through this analysis,

each phonological network also exhibited small-world characteristics, despite the

diversity of the languages.

2.3.2 Semantic Similarity

While minimal pairs can be determined directly given the pronunciations of words,

semantic similarity is less straightforward. In the HNM, semantic similarity was
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scat spat spot

cot

fat

scan

can

ban bat pot

cat

fought

caught

banner

fatty

fatter

matter

batter

later

late

latter

fate

Figure 12: A sample phonological network based on Vitevitch (2008)

determined by the existence of a subset or superset relationship, while in the SAM

and the RSAM, semantic similarity was determined by the number of shared prop-

erties (see Sowa (1992) for a comprehensive history of the philosophical development

of semantic similarity as it applies to categorization). Miller (1995) and Fellbaum

(1998) began the (English) WordNet project with the goal of building a comprehen-

sive semantic network. WordNet is made of synsets—sets of synonymous words—as

nodes. A synset generally contains several words, and a word can belong to several

synsets (“bank” has several meanings). The synsets are connected by several types

of relationships, but most notably: hypernymy and hyponymy (superset and subset

relationships, respectively), meronomy and holonymy (“is part of” and “has part”

relationships, respectively), and antonymy (opposite meanings).

Because of the completeness of WordNet as a semantic network, Steyvers and

Tenenbaum (2005) performed their analysis on WordNet. Nodes represented words

rather than synsets to provide a network of larger order, and each type of relationship

(including synonymy) provided an unweighted edge between words. In their study,

a comparable random graph was generated by rewiring connections in WordNet

randomly, as in Watts and Strogatz (1998). The measures of Lrand and Crand were

then computed on this random graph instead of using the approximations discussed

in Section 2.2.3. As with the phonological networks, an English semantic network

based on WordNet was shown to be a small-world network.

In an unpublished paper (discussed in Albert and Barabási (2002)), Yook et al.
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(2001) also examined a semantic network in which the edges only indicated synony-

mous words according to the Merriam-Webster Dictionary. The largest connected

component contained only 22,311 words, compared to Steyvers and Tenenbaum’s

122,005, but the network was still found to exhibit small-world characteristics. In

some sense, this shows that the mental lexicon represented as a semantic network

is a small-world network both locally (in Yook et al.’s subnetwork) and globally (in

Steyver and Tenenbaum’s whole network).

2.3.3 Similarity by Co-Occurrence

Recall that syntactic information can include verb frames, which specify the re-

quirements for words being used with the verb to make a grammatical utterance. In

some sense, the syntactic properties of a word influence how they appear together,

or co-occur (Mel’čuk, 1988). Thus, one way to model the lemma level of the RSAM,

in which syntactic properties are stored, is as a co-occurrence network. Cancho and

Solé (2001) created an unweighted co-occurrence network by connecting words that

were separated by at most one word in the British National Corpus. As an exam-

ple, from the following four sentences, a small co-occurrence network can be created

(Figure 13):

(a) John is tall.

(b) John drinks water.

(c) Mary is blonde.

(d) Mary drinks wine.

The final co-occurrence network of over 460,000 words was analyzed and again found

to be a small-world network. Since most studies in analyzing the structure of the

mental lexicon focus on models that emphasize semantic and phonological similarity,

little research exists in models utilizing syntactic information.

2.3.4 Similarity by Association

In the conceptual level of the RSAM, concepts are connected by several types of

relationships. While WordNet accounts for many of those relationships, it does
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Figure 13: A simple co-occurrence network created from
four sentences reproduced from Cancho and Solé (2001)

not include every type. For example, “cat” and “meow” presumably have some

sort of relationship (only cats meow), but the relationship does not fall into any of

WordNet’s relationship types. Since the word “meow” often evokes the word “cat”

in English speakers, this can be thought of as an association. Nelson et al. (1998)

have created a database of associations between words by collecting human-produced

associations for several years (amassing over 6,000 participants). Participants were

presented with English words and were asked to write the first word that came

to their mind—a discrete association task. For each presented word, words that

were produced by at least two participants were recorded (with their frequencies

and other statistical information) in the database as an association. Table 14 lists

some sample entries from the database with the most relevant columns: word refers

to the presented word, association refers to the produced word, group size is the

number of participants presented the given word, frequency is the number of times

the association appeared as a response, and strength is calculated as the frequency

divided by the group size.

Word Association Group Size Frequency Strength

absence class 152 4 0.026

blow candle 146 7 0.048

lab experiment 138 20 0.145

notebook paper 147 40 0.272

skin clear 149 2 0.013

stranger unknown 144 21 0.146

Table 14: Sample (condensed) entries from the database of
free association norms collected by Nelson et al. (1998)

Steyvers and Tenenbaum (2005) used this database to create an unweighted
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associative network, where nodes (words) were connected if one evoked the other

as a response by at least two participants, i.e., if the pair of words appeared in the

database as an entry. Unsurprisingly, a small-world structure was also found in the

associative network. Note that similarity by association may represent almost any

type of relationship. One word may evoke another freely due to various similarities.

Thus, the results from this associative network may be dependent on those from

the phonological, semantic, and co-occurrence networks. However, it also follows

that this associative network encompasses more complex relationships that cannot

be accounted for by those networks.

2.3.5 Summary

The final results of each study can be seen in Table 15. As the results indicate, a

small-world structure was found in each of the networks modeling the mental lexicon

using various types of similarity. Due to the availability of phonological information

of words, and given the straightforward metric used to determine phonological sim-

ilarity, there are more results for phonological networks in several languages. While

each network displayed small-world characteristics, no study integrated the different

types of similarity into one model for analysis. Furthermore, most of the studies

focused on the English lexicon, though the methods used could easily be applied

to a lexicon of another language, as long as there is enough information to create

the network. Although weighted networks have been analyzed extensively, there is

still little consensus on how to determine the existence of a weighted small-world

network, so most, if not all, studies on analyzing the structure of the mental lexicon

have focused on creating unweighted networks. In the present study, I attempt to

fill these gaps in the literature by creating and probing the structure of such an

integrated model.
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Network Order 〈k〉 L Lrand Lreg C Crand

English phonological 6,508 9.105 6.05 3.98 357.39 0.126 0.0014
(Vitevitch, 2008)

Spanish phonological 44,833 2.95 10.3 9.9 7,599 0.191 1.17× 10−5

(Arbesman et al., 2010)

Mandarin phonological 19,712 3.88 10.1 7.3 2,540 0.383 8.55× 10−5

(Arbesman et al., 2010)

Hawaiian phonological 1,406 3.44 5.5 5.8 204.4 0.241 7.40× 10−4

(Arbesman et al., 2010)

Basque phonological 35,173 2.50 10.4 11.4 7,034 0.206 1.21× 10−5

(Arbesman et al., 2010)

English semantic 122,005 1.6 10.56 10.61 38,127 0.0265 1.29× 10−4

(Steyvers and Tenenbaum, 2005)

English semantic 22,311 13.48 4.5 3.84 827.6 0.7 6.0× 10−4

(Yook et al., 2001)

English association 5,018 22.0 3.04 3.03 114.0 0.186 0.00435
(Steyvers and Tenenbaum, 2005)

English co-occurrence 460,902 70.13 2.67 3.06 3,286 0.437 1.55× 10−4

(Cancho and Solé, 2001)

Table 15: The shortest average path length L and the clustering
coefficient C of various models of the mental lexicon compared

to the same measures on corresponding random graphs
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Methods

In this section, I will describe the model of the mental lexicon used in the present

study and techniques used to uncover its structure in search of a small-world net-

work.

3.1 Model Requirements

As discussed in the previous section, recent models of the mental lexicon have taken

several types of similarity into account, but in separate networks. A more integrated

model of the mental lexicon should incorporate several features at once (as in the

RSAM). The following are important characteristics that were taken into account

in the present model and that should be considered in any integrated model of the

mental lexicon (for the provided reasons).

1. The network should be weighted. Since words can be similar to vary-

ing degrees, the mental lexicon should be represented as a weighted network,

as with many real-world networks (discussed in Section 2.2.1). This is evi-

denced in Nelson et al.’s (1998) free association experiment, in which some

words evoked a word with greater frequency among participants than other

words. This suggests an association strength between words that caused some

responses to appear more frequently than others. Collins and Loftus (1975)

called for weighted edges in their SAM to represent the number of shared

34
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properties between concepts. Furthermore, two previously discussed studies

have noted the importance of a weighted network representation of the mental

lexicon in future work (Steyvers and Tenenbaum, 2005; Vitevitch, 2008).

2. The network should incorporate phonological similarity. As suggested

by Collins and Loftus (1975) in the SAM, Bock and Levelt (1994) in the RSAM,

and Fromkin (1973), the network representing the mental lexicon should con-

sider the phonological component of words. Indeed, many studies have shown

that in behavioral experiments, participants can more easily recall or pro-

duce words that are phonologically similar or have large phonological neigh-

borhoods, i.e., many phonologically-similar neighbors (Meyer et al., 1974; Luce

and Pisoni, 1998; Rouibah et al., 1999; Copeland and Radvansky, 2001; Mar-

ian et al., 2008). Other studies have shown the opposite effect as well under

different conditions with potential interactions with word frequency and se-

mantic similarity (Conrad and Hull, 1964; Luce and Pisoni, 1998; Ziegler et

al., 2003). This is known as the lexical competition principle, where listeners

have more trouble recognizing words with large phonological neighborhoods

because many more words are activated at once compared to words with small

phonological neighborhoods. Whatever the particular conditions of the experi-

ments that lead to facilitated or inhibited lexical access, phonological similarity

is playing a role in retrieval, suggesting that encoding phonological similarity

in a model of the mental lexicon is necessary.

3. The network should incorporate semantic similarity. Semantic similar-

ity as a condition for edges in the mental lexicon has essentially been supported

since Collins and Quillian’s (1969) HNM, as they, Collins and Loftus (1975),

and Bock and Levelt (1994) have all proposed connections based on semantic

similarity in their respective models. Meyer and Schvaneveldt (1971) have

observed semantic priming effects, where participants who were exposed to

one word responded to semantically-related words more quickly than to non-

related words (presented immediately after the priming word). Furthermore,
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as phonological neighborhood size has been shown to influence lexical access,

Buchanan et al. (2001) have also demonstrated the influence of semantic

neighborhood size on retrieval through a lexical decision task—namely, that

the more semantically-related neighbors a word has, the more quickly the par-

ticipant can respond to the word (and can therefore access the word). In their

study, semantic similarity was determined through word co-occurrence, based

on the popular notion proposed by Harris (1954) known as the distributional

hypothesis, stating that words with similar distributions (say, in a corpus) tend

to have similar meanings.

4. The network should incorporate similarity by co-occurrence. The

distributional hypothesis suggests that co-occurrence is indicative of seman-

tic similarity, and Bock and Levelt (1994) proposed a lemma level containing

the syntactic information of words (including verb frames), so co-occurrence

must be incorporated into a complete model of the mental lexicon. Further-

more, Morgan (2014) has shown that expressions composed of frequently co-

occurring words elicited faster responses from participants, demonstrating the

existence of similarity by co-occurrence in the mental lexicon. Because co-

occurrence can appear as a result of syntactic and semantic information, this

requirement is not entirely orthogonal to the previous requirement. However,

it is included to account for co-occurrences that do not necessarily imply a

semantic relationship. For example, the expression “strong tea” is a more

frequent co-occurrence than “powerful tea,” even though “strong” and “pow-

erful” are synonymous, suggesting that the relationship between “strong” and

“tea” is not necessarily a semantic one.

5. The network should incorporate similarity by association. In some

sense, this requirement can be fulfilled by satisfying requirements 2, 3, and

4, since associations can result from several factors (hence, the use of the

general word “association”). However, if the measure of semantic similarity

used to fulfill requirement 3 cannot account for all types of semantic similarity,
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similarity by association can accommodate the shortcomings. For example, as

discussed in Section 2.3.4, using WordNet to determine semantic similarity

cannot explain the association between “cat” and “meow,” as the relationship

does fall into one of WordNet’s categories. Furthermore, since association data

has been gathered empirically through psycholinguistic experiments, similarity

by association can provide a more accurate reflection of the mental lexicon.

6. The network should incorporate orthographic similarity. Not dis-

cussed in previous graph-theoretic analyses of the mental lexicon, orthographic

similarity, i.e., similarity in written forms, is also an important aspect of the

mental lexicon. Meyer et al. (1974) have shown in a lexical decision task

that when a participant judged a word, if the participant had been exposed

to an orthographically-similar word (differed by one letter in its written form)

that was not phonologically similar, the participant responded more slowly

and made more errors than if the prime had not been related. For example,

participants had more trouble reacting to the word “break” when it was pre-

ceded by “freak” than when it was preceded by “couch.” The orthographic

neighborhood of a word was suggested to have an influence on lexical access

because of this experiment. Van Heuven and Dijkstra (1998) have also used

a lexical decision task to demonstrate that Dutch-English bilingual speakers’

responses to English words with many orthographic neighbors in Dutch are

inhibited. On the other hand, Ziegler et al. (2003) have found a facilitatory

effect—words with more orthographic neighbors were recognized more quickly.

As with the studies on phonological neighborhoods, there is competing evi-

dence on whether orthographic neighborhood size facilitates or inhibits lexical

access; in either case, it is clear that orthographic similarity affects lexical

access in some way and must be included in a model of the mental lexicon.

7. The network should incorporate word frequency information. The

frequency of a word in a language is generally considered to be its frequency in

a sizable corpus of the language. Zipf (1949) posited that the phenomenon of
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some words being used significantly more frequently than other words arises

from the principle of least effort : humans are inclined to use few words fre-

quently to efficiently reach understanding, thereby minimizing effort in pro-

cessing and production. The question of whether or not humans are sensitive

to these word frequencies has been studied extensively. As discussed in Section

2.1, Smith et al. (1973; 1974) and Rosch (1975) have demonstrated typical-

ity effects in semantic verification and categorization tasks (typicality can be

thought of as frequently-used words). The effects of word frequency on lexical

access have also been pervasive in other psycholinguistic experiments. Many

studies have shown that more frequent words are more easily recognized or

accessed than less frequent words (Howes, 1957; Rosenzweig and Postman,

1957; Segui et al., 1982; Balota and Chumbley, 1984; Luce and Pisoni, 1998).

Therefore, word frequency must be encoded in a complete model of the mental

lexicon.

8. The network should incorporate word concreteness information. When

children are taught new words, the words are often accompanied by visuals

because imagery is thought to aid in word retention. Indeed, many studies

have found that concrete words are retrieved and responded to more quickly

than abstract words (Schwanenflugel and Shoben, 1983; Kroll and Merves,

1986; Bleasdale, 1987; de Groot, 1989; Paivio et al., 1994). Similar effects

have been found in whole sentence processing, where concrete sentences were

judged more quickly than abstract sentences (Holmes and Langford, 1976;

Schwanenflugel and Shoben, 1983). For example, participants were able to

deem the sentence “Armed soldiers surrounded the barracks” (many concrete

words) as plausible more quickly than the sentence “Mutual distrust domi-

nated the sessions” (many abstract words). Two popular, competing theories

attempting to explain the processing advantage of concrete words over abstract

words are the dual-coding theory proposed by Paivio (1986; 1991), which claims

that concrete words are stored with a visual component in addition to linguis-
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tic information (whereas abstract words lack the visual component), and the

context-availability model developed by Bransford and McCarrell (1974) and

Kieras (1978), which claims that concrete words simply have more associative

links in the mental lexicon than abstract words. However, as with many com-

peting theories, a comprehensive theory of concreteness effects likely combines

elements of both theories (Jessen et al., 2000). It is therefore important to

encode concreteness information into a model of the mental lexicon. While the

level of concreteness or abstractness of a word can be determined by eliciting

human judgments, the absence of a formal definition of concreteness as it ap-

plies to words renders the information subjective; however, human responses

still provide an empirical reflection of word storage in the mind.

3.2 Creating the Model

The requirements presented in the previous section provided the basis for the present

model, which was created for the English lexicon. As with every other model of the

mental lexicon discussed in Section 2.3, the integrated model I propose represented

words as vertices. Edge weights between two nodes were determined by taking the

arithmetic mean of the following five measures:

• Phonological Similarity. Following the scheme Vitevitch (2008) and Arbesman

et al. (2010) used in creating their phonological networks, the phonological

similarity between two vertices was 1 if the two words formed a minimal pair

and 0 otherwise. This definition of phonological similarity has also been used

by Ziegler et al. (2003), and Luce and Large (2001) have shown that when

participants were asked to produce the first real word they could think of af-

ter hearing a non-real word, a majority responded with a word that was one

phoneme different from the non-real word. The pronunciation of words was

found using the Carnegie Mellon University (CMU) Pronunciation Dictionary,

in which English words are transcribed into phonemes. For words with more

than one pronunciation (e.g., “comparable,” where the main stress can lie on
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“com” or on “par” depending on the speaker), if any of the pronunciations

formed a minimal pair with the word being compared, the words were consid-

ered phonologically similar.

• Semantic Similarity. Several measures of semantic similarity have been

proposed, many of which are based on the structure of WordNet (explained,

summarized, and compared in Budanitsky and Hirst (2006) and Meng et al.

(2013)). In this model, the Wu-Palmer (WUP) similarity metric proposed by

Wu and Palmer (1994) was chosen. The motivation for the measure is the

idea that more semantically-similar words are closer together in a hierarchy

of concepts, as this implies that more features are shared between the words

(in the HNM, features of a word are stored with the highest ancestor of the

word containing those features). To formally define WUP similarity for any

two concepts c1 and c2 in a hierarchy, denoted sim(c1, c2), let dep(c1) denote

the depth of c1 in the hierarchy, and let lcs(c1, c2) denote the least common

subsumer of the two concepts, i.e., the deepest concept in the hierarchy that is

an ancestor to both concepts. Recall that d(c1, c2) denotes the shortest path

length between c1 and c2, which is applicable here, since a hierarchy is itself a

graph. Then WUP similarity is defined as

sim(c1, c2) =
2 · dep(lcs(c1, c2))

d(c1, c2) + 2 · dep(lcs(c1, c2))
.

The WUP similarity metric essentially considers the distance between two con-

cepts relative to their depths in the entire hierarchy. Since WordNet includes

superclass and subclass relationships, it can be used as a hierarchy for calcu-

lating WUP similarity. As an example, consider the words “dog” and “cat.”

The placement of these words in WordNet can be seen in Figure 16, where

there are nine concepts between “entity” (the root node) and “placental.” Re-

call that WordNet uses nodes to represent synsets, so each word in Figure 16

is actually the representative word of a synset. The least common subsumer

of “dog” and “cat” in this diagram is “carnivore,” which has a depth of 12.
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Furthermore, the shortest path length from “dog” to “cat” is 4 (from “dog”

to “canine” to “carnivore” to “feline” to “cat”). Thus, the WUP similarity

score is 2 · 12/(4 + 2 · 12) ≈ 0.857. In WordNet, nouns and verbs are stored in

entity

placental

carnivore

canine feline

dog cat

…

Figure 16: A subnetwork of WordNet containing “dog” and “cat”

separate hierarchies, while adjectives and adverbs are not stored hierarchically.

Thus, WUP similarity is only meaningfully calculated between two nouns or

two verbs. All other pairs received a semantic similarity score of 0. Future

work seeks to improve the measure of semantic similarity so that all parts

of speech can be considered. Furthermore, since words can belong to several

synsets, the semantic similarity between two words was assigned the greatest

WUP similarity score between all pairs of synsets to which each word belongs.

Therefore, when considering two words with several meanings, the meanings

for which the WUP similarity score is maximal are used to determine the

semantic similarity.

• Similarity by Co-Occurrence. Reasonable co-occurrence information can

be discovered from a sizable corpus in the target language. For this model,

co-occurrence frequencies were computed using the Brown Corpus (Francis

and Kučera, 1964), a collection of 500 texts from 15 genres, totaling to over

one million words. First, all stop words were removed, i.e., words with little

to no semantic value, such as “the” or “and,” and words were lemmatized,
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i.e., converted to their base form with no inflectional endings (e.g., “words”

lemmatized is “word,” and “running” lemmatized is “run”). Then, frequencies

of bigrams, ordered pairs of adjacent words, were computed. In this model, the

order of each bigram does not matter, as the similarity between word v and

word w is the same as the similarity between word w and word v. Therefore, for

each distinct pair of words, the greater frequency was taken. For example, the

frequency of the bigram “united” and “state” was greater than the frequency of

the bigram “state” and “united” (since the expression “United States” is more

common than the expression “states united”), so the frequency of the bigram

“united” and “state” was used as the frequency count of the unordered pair

“united” and “state.” The frequencies were then normalized by the greatest

frequency count to obtain a co-occurrence similarity score between the word

pairs (so that the most frequent pair had a score of 1). Thus, for each pair

of vertices, the co-occurrence similarity score was that obtained through this

method if the pair indeed co-occurred in the corpus and 0 otherwise.

• Similarity by Association. The University of South Florida Free Asso-

ciation Norm Database (Nelson et al., 1998) was used to obtain association

similarity scores. The strength of a word pair (as described in Section 2.3.4)

was taken as the association similarity score between the pair of words. Again,

in this model, words are taken as unordered pairs, so if word v evoked word w

in more participants than the number of participants who responded to word w

with word v, the association similarity score was assigned the strength of v elic-

iting w. For example, 140 participants were presented with the word “above,”

and 79 among them responded with “below,” a strength of 79/140 ≈ 0.564. On

the other hand, 73 out of 145 participants responded to “below” with “above,”

a strength of 73/145 ≈ 0.503. Then the association similarity score between

the nodes “above” and “below” would be the greater of the two, 0.564.

• Orthographic Similarity. As with other types of similarity, many measures

have been proposed to determine orthographic similarity, many of which have
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been collected and compared in Christen (2006). It was found that the Jaro

similarity measure is most effective in a name-matching task (determining if

two strings represent the same name). To some extent, the Jaro similarity

measure, originally formulated by Jaro (1989), determines orthographic sim-

ilarity by the number of matching characters and the number of transposed

characters between two strings. Let s1 = c1 · · · cn and s2 = d1 · · · dm be two

strings of letters c1, . . . , cn, d1 . . . , dm. Two letters ci and dj are considered

semi-matching if ci = dj and |i− j| ≤
⌊
max(n,m)

2

⌋
− 1, i.e., the corresponding

letters are within a reasonable distance from each other in the words. Two

letters are considered matching if i = j in the definition of semi-matching,

i.e., the matching letters are in the same position in the words. Note that

matching letters are also semi-matching letters. Let mS be the number of

semi-matching letters, and let mM be the number of matching letters. Then

the Jaro similarity between the two strings, denoted Jaro(s1, s2), is defined as

Jaro(s1, s2) =


1
3

(
mS
n + mS

m + mS+mM
2mS

)
, mS 6= 0

0, mS = 0
.

Rawlinson (1976) has found that initial and final letters of words were more

important for word recognition than medial letters (hence, the popular phe-

nomenon where “tihs can siltl be raed by Egilsnh spkeaers” despite the re-

arrangement of medial letters). Thus, in the present model, for two words v

and w (represented in their written forms), the orthographic similarity score

between v and w was given by Jaro(v, w) if neither the initial letter of v and

the initial letter of w matched nor the final letter of v and the final letter of

w matched,
√

Jaro(v, w) if the corresponding initial or final letters matched

(but not both), and 4
√

Jaro(v, w) if the corresponding initial and final letters

matched. Since the Jaro similarity score is a value strictly between 0 and 1,

taking square roots increases the score. In this scheme, “brat” and “bond”

have a higher orthographic similarity score than “brat” and “from” because
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of the shared initial letters, despite the fact that both pairs have exactly one

matching letter in the same position.

Each of the similarity measures between two words produces a value between 0

and 1, so taking the average of the similarity scores gives a value between 0 and

1 for the weight of the edge connecting the two words. While Bock and Levelt

(1994) proposed a multi-level network for the mental lexicon, taking the average

value of each similarity measure effectively “flattens” the network into one level,

where the contribution from each level is weighted equally. In future work, it would

be necessary to create and analyze a multi-level model; however, current literature

lacks formalizations of small-world structures in multi-level networks.

The edge weight was further multiplied by the concreteness values and the fre-

quency values of both words. Brysbaert et al. (2014) have collected concreteness

ratings from over 4,000 participants for over 37,000 English words. Participants

were asked to rate words on a 5-point scale for their concreteness, which the par-

ticipants were instructed to interpret as how directly a word can be experienced by

one of the senses rather than only be understood through the use of other words.

The ratings were averaged across the participants for each word, and these averaged

ratings provided concreteness values for words. The value was normalized to be a

number between 0 and 1 by dividing the value by 5. To determine the frequency

value of a word, a corpus of subtitles was used. Dave (2011) has compiled word lists

in several languages with word frequencies from a large database of subtitles. The

frequency value of a word was then taken to be the frequency of the word normal-

ized by the maximal frequency among all words in the English word list (so that

the most frequent word in the list had a frequency value of 1).

Concreteness values and frequency values are properties of nodes themselves

rather than edges. A complete model would use these values to create node weights

in addition to edge weights. In the current model, the concreteness value and fre-

quency value of a word were instead used to strengthen the edges incident with

the word to simulate node-weighting. This technique is similar to that used by
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Wiedermann et al. (2013) in their analysis of multi-level networks.

To summarize, consider two words u and v in the lexical network. Let simp(u, v)

denote the phonological similarity score between v and w, sims(u, v) their seman-

tic similarity score, simc(u, v) their co-occurrence similarity score, sima(u, v) their

association similarity score, and simo(u, v) their orthographic similarity score. Fur-

thermore, let c(v) denote the concreteness value of v and f(v) the frequency value

of v. Then the weight of the edge joining u and v is given by

wuv =
simp(u,v)+sims(u,v)+simc(u,v)+sima(u,v)+simo(u,v)

5 · c(u)c(v)f(u)f(v).

By this definition, edge weights take values between 0 and 1, where values close to

0 indicate a weak relationship, and values close to 1 indicate a strong relationship.

3.3 Analyzing the Structure of the Model

The main hypothesis of this work is that a more integrated model of the mental

lexicon exhibits small-world characteristics similar to those of previous models. To

test this hypothesis on the model described in the previous section, two experiments

analyzing the structure of the network were conducted. The following sections

describe these experiments.

3.3.1 Experiment 1: The Weighted Lexicon

As presented in Section 2.2.4, unweighted small-world networks are characterized by

a short average shortest path length L and a large clustering coefficient C. Weighted

small-world networks presumably have the same properties given an appropriate

measure of the weighted clustering coefficient. In this experiment, the weighted

average shortest path length L′ and the weighted clustering coefficient C ′ were com-

puted for the proposed integrated model of the mental lexicon. Words were taken

from WordNet (as lemmas, i.e., as uninflected words) and were removed if phono-

logical, concreteness, or frequency information was unavailable. This resulted in



CHAPTER 3. METHODS 46

a total vocabulary of 22,489 words. 1,000 words were randomly chosen as nodes

(due to computational limitations), and edges were created for each pair of nodes

following the method described in the previous section. This will be referred to as

the adjusted lexical network. The value of L′ was computed for the resulting largest

connected component in a manner similar to Newman’s (2001a): the distance be-

tween two adjacent vertices u and v was defined as 1−wuv rather than 1/wuv, and

these values were used to find weighted shortest paths. The choice of definition for

distance was made to constrain distances between 0 and 1 while retaining the prop-

erty that distance increases as strength (edge weight) decreases. The value of C ′ was

computed for the resulting largest connected component using Onnela et al.’s (2005)

definition of the WLCC. To examine the impact of the frequency and concreteness

values on the edge weights, a second weighted network was created from the same

1,000 nodes, where edge weights were determined without the multiplicative factor

of c(u)c(v)f(u)f(v) for each pair of nodes u and v. This will be referred to as the

unadjusted lexical network.

To determine whether or not a small-world structure existed in the network,

these computed values were compared against those of weighted random graphs.

Two weighted random graphs of order 1,000, one against which to compare the un-

adjusted lexical network (no concreteness or frequency values) and one against which

to compare the adjusted lexical network, were generated by instilling randomness

into each feature of the integrated model. Each component of an edge weight was

randomly picked for each pair of vertices. Since each similarity score took on values

between 0 and 1, real numbers between 0 and 1 were randomly chosen (uniformly)

for each type of similarity. The exception to this was for phonological similarity:

since the score in this case was either 0 or 1, either 0 or 1 was randomly assigned to

the phonological similarity score. Random values between 0 and 1 were also chosen

to represent the concreteness and frequency parameters. The edge weight between

two vertices was then computed using the same formula for the lexical network, but

with these randomized values. The values of L′rand and C ′rand were then found for

the largest connected component of each random graph using the same definitions
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as in the lexical network.

3.3.2 Experiment 2: The Unweighted Lexicon

Due to the paucity of research on the defining properties of weighted small-world net-

works, the weighted (adjusted) lexical network from Experiment 1 was transformed

into unweighted networks to analyze for small-world properties. Two transformation

methods were tested:

• Method 1. A minimum threshold on edge weights was set. If the value of

the edge weight was at least the value of the threshold, the edge remained in

the network, but as an unweighted edge; otherwise, the edge was discarded.

This binary decision process generated an unweighted graph as a function of

the minimum threshold.

• Method 2. The weakest edges were incrementally removed to simulate more

fine-grained threshold settings. The 500 weakest edges were removed, and the

remaining edges were treated as unweighted edges, resulting in an unweighted

graph. This process was repeated until no more edges could be removed or

until the largest connected component was composed of a single vertex. This

method was also compared against unweighted networks generated by incre-

mentally removing a random set of 500 edges.

For each unweighted network, L and C were computed for the largest connected

component. These values were compared against Lrand and Crand, which were com-

puted for an unweighted random network of the same order and approximately the

same number of edges as the largest connected component of the unweighted lexi-

cal network using the approximations developed by Watts and Strogatz (1998) and

Albert and Barabási (2002) discussed in Section 2.2.3.
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Results

4.1 Experiment 1 Results

The results of Experiment 1 are reported in Table 17. The integrated model and

the random network contained approximately the same number of edges and had

roughly the same weighted average shortest path length, but a small-world structure

was not found in the lexical network. In fact, the opposite effect was found: the

weighted clustering coefficient of the integrated model was significantly smaller than

that of the random network. Sample edges that were created in the adjusted lexical

network are given in Table 18. The first two columns list the word pair, the next five

columns list the phonological, semantic, association, orthographic, and co-occurence

similarity scores, the next four columns list the frequency values and the concreteness

values of the two words, and the final column lists the total weight of the edge.

Additionally, the 10 strongest edges and the 10 weakest edges of the adjusted and

unadjusted lexical networks are listed in Table 19.

Network Order Edges L′ C′

Lexical Network (Adjusted) 1,000 485,703 1.028 6.190× 10−5

Random Network (Adjusted) 1,000 499,500 1.000 0.049

Lexical Network (Unadjusted) 1,000 485,703 0.883 0.219

Random Network (Unadjusted) 1,000 499,500 0.547 0.481

Table 17: Calculated results from Experiment 1
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Table 18: A sample of edges in the integrated model

Node1 Node2 Phon Sem Assoc Ortho Co-oc Freq1 Freq2 Conc1 Conc2 Weight

care watch 0 0.737 0 0.483 0 0.024 0.016 0.466 0.922 4.057× 10−5

better boss 0 0.857 0 0.687 0 0.039 0.008 0.382 0.766 2.778× 10−5

care child 0 0.154 0.020 0.695 0.008 0.024 0.011 0.466 0.956 2.081× 10−5

teller bank 0 0.421 0.814 0 0 1.919× 10−4 0.005 0.876 0.956 1.824× 10−7

flick flip 1 1 0.026 0.885 0 1.453× 10−4 5.629× 10−4 0.742 0.794 2.806× 10−8

sewage raw 0 0.267 0 0.667 0.018 6.495× 10−5 5.337× 10−4 0.904 0.670 3.994× 10−9

dogged doggy 1 0 0 0.907 0 3.051× 10−5 2.198× 10−4 0.452 0.852 9.848× 10−10

unenforced vacillation 0 0 0 0.397 0 3.281× 10−7 3.281× 10−7 0.35 0.484 1.447× 10−15

Table 19: Strongest and weakest edges in the resulting networks

Adjusted Lexical Network Unadjusted Lexical Network

Node1 Node2 Weight Node1 Node2 Weight

better watch 4.543× 10−5 flick flip 0.582

care watch 4.0572× 10−5 bank tank 0.547

better care 2.945× 10−5 mouse moose 0.545

better boss 2.778× 10−5 poker poke 0.527

watch touch 2.624× 10−5 gin pin 0.524

better child 2.236× 10−5 hanger hacker 0.521

care child 2.081× 10−5 filer fighter 0.517

watch child 1.943× 10−5 talker stalker 0.515

better news 1.782× 10−5 mill male 0.509

better touch 1.761× 10−5 solution pollution 0.508

· · · · · ·
preferentially nonstandard 1.402× 10−15 bobcat shuffle 0.0143

aggrieve indestructibility 1.358× 10−15 hijacking moose 0.0138

draftsmanship unenforced 1.323× 10−15 dopey bashful 0.0066

preferentially draftsmanship 1.258× 10−15 curse shaky 5.089× 10−4

nonstandard aggrieve 1.184× 10−15 dealer optimistic 5.089× 10−4

aggrieve unenforced 1.152× 10−15 highly fat 5.089× 10−4

aggrieve vacillation 1.107× 10−15 vital touch 5.089× 10−4

preferentially unenforced 1.090× 10−15 frigid except 5.089× 10−4

draftsmanship aggrieve 9.758× 10−16 expect affair 5.089× 10−4

preferentially aggrieve 8.076× 10−16 whatever fun 5.089× 10−4

4.2 Experiment 2 Results

For Method 1, based on the results from Experiment 1, 50,000 evenly-spaced mini-

mum threshold values between 1.0× 10−16 and 1.0× 10−5 were chosen to generate

unweighted networks from the adjusted lexical network. The values of Crand/C and

Lrand/L were plotted against the threshold values for each of the 50,000 resulting

unweighted networks. Note that in an unweighted small-world network, we would

expect to find Crand/C close to 0 (since C should be significantly greater than Crand)

and Lrand/L close to 1 (since L and Lrand should be approximately equal). These

plots are given in Figure 20.
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Figure 20: Plots of Lrand/L (left) and Crand/C (right) against minimum threshold
values using Method 1

For Method 2, the values of Crand/C and Lrand/L were again plotted, but against

the number of edges removed. Figure 21 shows the plot as each set of 500 weakest

edges is removed, and Figure 22 shows the plot as each set of 500 random edges is

removed.
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Figure 21: Plots of Lrand/L (left) and Crand/C (right) as weakest edges are
removed using Method 2
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Figure 22: Plots of Lrand/L (left) and Crand/C (right) as random edges are
removed using Method 2
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Discussion

5.1 Analysis of Results

The results from Experiment 1 show that, using the discussed methods of measuring

L′ and C ′, the integrated model of the mental lexicon proposed here does not exhibit

small-world behaviors. Several sources of error are possible. While the definition of

L′ is more intuitive, the definition of C ′ is less so; the reversed outcome between the

weighted clustering coefficients may be due to an inappropriate definition of C ′ in

this context. A different method for calculating C ′ may produce different results.

Another explanation could be the method of weighted random graph generation. As

previously mentioned, no standard method of producing a weighted random graph

serving as an appropriate comparison for a real-world network exists. Furthermore,

the definition of a weighted small-world network was extended directly from the

definition of an unweighted small-world network; there may be unforeseen and un-

studied nuances introduced by extending the definition to weighted networks.

Other sources of error may be in the integrated model itself. With 7 nodes,

there can be a maximum of
(
7
2

)
= 21 edges among them. The fact that only 7

words appeared in the 10 strongest edges (nearly half of the possible number of

edges between 7 nodes) of the adjusted lexical network suggests that the frequency

value or the concreteness value may be exerting too strong of an influence compared

to the other measures incorporated in the edge weights. The same can be said
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about the 10 weakest edges. If this is the case, then the frequency value or the

concreteness value is strongly promoting a connection that would otherwise be weak.

However, this effect may be desirable, as it has been shown that word frequency

and familiarity play a significant role in word recognition and recall (discussed in

requirement 7 in Section 3.1). Nonetheless, there is the possibility that the technique

of simulating node weight by strengthening its edges by some factor is flawed. This

is further evidenced by the word pairs in the 10 strongest edges in the unadjusted

lexical network, which contain a variety of words. However, in this network, words

which were minimal pairs were pushed to the top, suggesting that the phonological

similarity score may be masking the other similarity scores. Taking the arithmetic

mean of the various similarity scores is a näıve approach that does not consider the

possibility that the different types of similarity may actually be interacting with

unbalanced roles, e.g., similarity by association may be more important in lexical

storage than phonological similarity, or the possibility that each similarity score,

though a value between 0 and 1, has skewed distributions and must be adjusted

accordingly. Regardless, it has been shown that different types of similarity indeed

interact. Rouibah et al. (1999) demonstrated that in a task requiring semantic

judgments, a phonological priming effect can be found, and in a task requiring

phonological judgments, a semantic priming effect can be found, suggesting that

both phonological and semantic information were accessed, independent of the target

task.

The individual methods of determining similarity can also be brought to ques-

tion, as many measures exist for each type of similarity. While the other measures

take a real value between 0 and 1, phonological similarity takes on one of two values.

A more fine-grained score is necessary, since two words may sound similar without

necessarily being minimal pairs (e.g., “pass” and “bath”). Minimal pairs were used

in this work because defining phonological similarity beyond the notion of minimal

pairs becomes complex. It may not be enough to consider phoneme deletions, in-

sertions, or mutations; a pair of phonemes may sound more similar than another

pair of phonemes (e.g., /b/ and /p/ vs. /b/ and /e/). More information must be
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collected about phoneme similarity or more complex algorithms must be developed

and used (see Kondrak (2000) for such an algorithm) to obtain a more accurate and

fine-grained phonological similarity score.

Other methods of determining semantic similarity exist; however, many of the

methods based in WordNet use the notion of information content of a word, which

is a measure dependent on the frequency of the word in a corpus. These measures

were not considered here to minimize the amount of overlap between scores—in this

case, between the semantic similarity score and the frequency value (and to some

extent, the co-occurrence similarity score, which was also based on word frequency

in a corpus). Though an effort was made to keep similarity scores orthogonal (so

that no score was dependent on another score), the method for determining one type

of similarity may not be defined well enough to account for every component of the

type of similarity. For example, any semantic similarity measure based in WordNet

will not be able to account for every human intuition of semantic similarity—this is

where similarity by association becomes important. However, currently, association

similarity scores can only be obtained empirically through elicitation tasks, which

can be subjective.

Another shortcoming in testing this model is that nodes represented words solely

in their written forms. This raises two important questions: What should a node

in the mental lexicon represent? And how should multiple meanings and pronun-

ciations be stored? In Bock and Levelt’s (1994) RSAM, nodes on each level could

represent different units of language, from phonemes to morphemes to whole words.

In the present model, the multi-level approach was consolidated by collapsing the

levels into a single-level network. By choosing to use a node to represent the written

form of a word, the phonological, syntactic, and semantic information of the word

were all stored in the single node representing the word. This means that nodes

were distinguished only orthographically, so words with multiple meanings or pro-

nunciations did not receive their due distribution in the network; all of the meanings

and pronunciations of the word were located within the node itself. For example, in

Table 18, the words “better” and “boss” had a high semantic similarity score. This
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is due to the fact that “better,” though generally thought of as meaning “of higher

quality,” can mean “a superior.” Since a “boss” is a “superior,” this interpretation

of “better” is closely semantically-related to “boss.” Ideally, these different mean-

ings of “better” would be stored separately so that the less common meaning is not

used in determining the association or co-occurrence similarity scores. However,

many of the studies in Section 2.3.5 successfully chose the written forms of words

to be nodes in their networks (Cancho and Solé, 2001; Steyvers and Tenenbaum,

2005; Vitevitch, 2008; Arbesman et al., 2010), but none mentioned how words with

multiple meanings or pronunciations were handled.

Furthermore, there have been mixed results about whether every possible mean-

ing of a word is activated when the word itself is activated or only the correct

meaning of the word in context is activated. For example, when participants heard

a sentence that began with “Jack tried the punch . . . ,” reaction times to the words

“hit” and “drink” were both decreased (Gernsbacher and Faust, 1991). This sug-

gests that all meanings of a word are activated with the word. On the other hand,

when participants were presented with a sequence of three words, if the first and

third words were related to the same meaning of the second word (“save,” “bank,”

and “money”), the third word was recognized more quickly than when the third

word was unrelated to the second (Schvaneveldt and Meyer, 1976). Moreover, if the

first and third words were related to different meanings of the second word (“river,”

“bank,” and “money”), the third word was not recognized significantly more quickly

or more slowly than to a word unrelated to the second. This suggests that the con-

text of the first word selected the appropriate meaning of the second word without

activating the other meanings of the second word. The former case would be sup-

ported by a network in which every meaning of a word is stored with the word in a

node, so the activation of a node would activate the properties within the node. The

latter case would be supported by a network in which different meanings of a word

are stored in different nodes, so context can guide the activation of one meaning

over another separately. Future studies should consider the implications each model

has on the network structure.
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In contrast to Experiment 1, Experiment 2 showed promise for the integrated

model. Based on the results, we see that setting minimum threshold values generated

small-world graphs. In Figure 20, when extremely weak edges have been removed,

the resulting unweighted networks have average shortest path lengths close to those

of random graphs and clustering coefficients greater than those of random graphs.

While a rising trend can be observed in both plots, the trend does no harm to

the analysis because minimum thresholds greater than 1.0× 10−5 led to extremely

disconnected graphs in which the largest connected component had very few vertices,

if not a single vertex. Furthermore, from Tables 10 and 15, ratios of Crand to C for

previously-studied small-world networks ranged from 5.87 × 10−5 to 0.273, so the

ratios found in Figure 20 are appropriate indicators that the generated unweighted

lexical networks were small-world.

The second method tested in Experiment 2 also suggested small-world behav-

iors in the resulting unweighted networks. As weakest edges were removed, the un-

weighted counterparts became more and more small-world, as shown in Figure 21.

The average shortest path length remained relatively close to the average shortest

path length of a comparable random graph, and the clustering coefficient constantly

surpassed that of a random graph as edges disappeared. Figure 22 assures that

this trend does not arise even when edges are removed randomly; the clustering

coefficient remained nearly equal to that of a random graph as edges were removed.

This implies that weak edge removal, whether performed by setting a threshold or

incrementally, can uncover small-world properties in the lexical network, suggesting

that when a weighted model of the mental lexicon is used, extremely weak edges

may need to be disregarded.

Setting a minimum threshold for edge weights in this model of the mental lexicon

mimics threshold potentials in neurons of a neural network, a threshold that excita-

tion in a neuron must surpass in order to fire (Rushton, 1927; Hodgkin and Huxley,

1952). Removing weak connections can then be likened to activation that fails to

spread from one node to another due to poor signal strength. The unweighted coun-

terpart of the integrated model retains connections that have a greater potential for
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activation, which may be important in applying the model to computational models

of language processing.

5.2 Applications

Models of speech perception, speech production, and lexical access are all intimately

related to models of the mental lexicon. Indeed, a popular model of speech percep-

tion called the TRACE Model is based on an interactive network similar to the

RSAM (McClelland and Elman, 1986). An analysis of lexical networks as in the

present study can help support the foundation for these models of speech processing

and understanding by providing evidence for techniques that can both accommo-

date previously-studied psycholinguistic phenomena and afford the model efficient

computational ability (as discussed by Watts and Strogatz (1998) for small-world

networks).

5.3 Future Work

As discussed in the analysis, there are many future directions to be taken. Each

level of the model should be analyzed separately to see if one level plays a greater

role than another and to see if a multi-level approach would produce similar or

better results. A possible method for teasing out the influence exerted by each level

is to isolate pairs of words with a single type of similarity and present them to

participants to empirically determine the usefulness of each similarity in processing.

Another method would be to reverse engineer the weights by again determining

empirical similarity between words through controlled experiments.

Future directions also include exploring different methods of calculating simi-

larity at each level. Latent semantic analysis has been used extensively and ef-

fectively to uncover underlying relationships between words based on the principle

that words used in similar contexts tend to have similar meanings (Landauer and

Dumais, 1997). The linear algebra-based technique has been successful in deter-

mining synonyms given a large amount of text in the absence of a thesaurus or
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other source indicating word relations (Landauer et al., 1998a) and several other

linguistically-based tasks requiring automated word-similarity detection (Soboroff

et al., 1997; Gordon and Dumais, 1998; Landauer et al., 1998b; Gong and Liu,

2001). This method may provide a more accurate measure of semantic similarity

than the WordNet-based technique in the present study.

The problem of the lack of weighted small-world network analyses in the litera-

ture is also a topic for future work. Testing different formulations of the weighted

clustering coefficient and different methods of generating comparable weighted ran-

dom graphs may produce more enlightening results. Furthermore, the present study

calculated the weighted average shortest path length by taking 1−w for each weight

w instead of Newman’s 1/w. Though the average shortest path length comparisons

showed roughly equal results in the experiments, using the multiplicative inverse

may demonstrate different trends and should be investigated.

This study examined a subset of the English lexicon. A larger set of words

should naturally be tested, but computational complexity increases dramatically

as more words are chosen to be included in the network. Moreover, there is the

question of the generalizability of these requirements and this integrated model to

other languages. A cross-linguistic analysis would be an interesting future direction,

as well as applying the model to a bilingual lexicon.

5.4 Conclusion

In this study, I proposed a set of requirements for an integrated model of the mental

lexicon as a weighted network and built such a model for analyzing in search of

small-world structures, a ubiquitous property in many real-world networks. While

this integrated model of the mental lexicon failed to show small-world characteristics

as a weighted network, this may have been due to the design choices of the model

or the lack of current understanding of weighted small-world networks. Although

the tested model fulfilled the requirements in Section 3.1, there are still many other

ways to satisfy the requirements. Furthermore, this list of requirements may not be
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exhaustive, but each requirement is important in a complete model of the mental

lexicon, as evidenced by numerous psycholinguistic studies. By transforming the

weighted lexical network into an unweighted network by removing weak connections,

representing connections that are least likely to be activated in processing over

the network, the desired small-world properties were found, suggesting that the

underlying structure of this integrated model can provide the same computational

benefits as other small-world networks and is indeed a step towards a complete

model of the mental lexicon.
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