
Governors State University
OPUS Open Portal to University Scholarship

All Student Theses Student Theses

Spring 2016

Nested Monte Carlo Tree Search as Applied to
Samurai Sudoku
Laura Finley
Governors State University

Follow this and additional works at: http://opus.govst.edu/theses

Part of the Mathematics Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Mathematics Department
This Thesis is brought to you for free and open access by the Student Theses at OPUS Open Portal to University Scholarship. It has been accepted for
inclusion in All Student Theses by an authorized administrator of OPUS Open Portal to University Scholarship. For more information, please contact
opus@govst.edu.

Recommended Citation
Finley, Laura, "Nested Monte Carlo Tree Search as Applied to Samurai Sudoku" (2016). All Student Theses. Paper 72.

http://opus.govst.edu?utm_source=opus.govst.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/theses?utm_source=opus.govst.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/student_theses?utm_source=opus.govst.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/theses?utm_source=opus.govst.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opus.govst.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opus.govst.edu/theses/72?utm_source=opus.govst.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
http://www.govst.edu/Academics/Colleges_and_Programs/College_of_Arts_and_Sciences/Division_of_Computing_Mathematics_and_Technology/Mathematics/Mathematics,_Master_of_Science/
mailto:opus@govst.edu

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI

SUDOKU

By

Laura Finley

B.S., Loyola University Chicago, 2010

THESIS

Submitted in partial fulfillment of the requirements

For the Degree of Master of Science,

With a Major in Mathematics

Governors State University

University Park, IL 60466

2016

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU iii

Acknowledgements

First, special thanks go out to my advisor, Dr. Tweddle, for all the advice,

time, and support he has provided. I could not have done it without his guidance,

and I could not have asked for a better mentor. Many thanks to my committee

members, Dr. Zhang and Dr. Galante, for taking the time from their busy

schedules to work with me and provide advice. It has truly been a wonderful

learning experience thanks to my committee.

I would like to thank C.J. Sheehe for the thought-provoking discussions

that helped me find issues in my code and make improvements to it. It would not

have been as successful without his help.

I am grateful for the assistance from my sister, Rose Nee, in setting up

puzzles, as well as the endless support and encouragement.

Finally, I thank my husband, Ryan Finley, for all of his help and support.

From setting up puzzles with me to helping me maintain balance between my

responsibilities, he has done so much to help me with this project, and I am truly

grateful.

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU iv

Contents

1. Introduction 1

1.1 Definitions 1

1.2 Algorithms for Sudoku 3

1.3 Nested Monte Carlo Search 8

2. Algorithm Description 9

3. Analysis of Application to Samurai Sudoku 14

3.1 Comparison to other solvers 16

3.2 Drawbacks of the algorithm 19

4. Future Work 21

5. Conclusion 25

6. References 27

7. Appendix 29

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU v

Abstract

As Sudoku has come into prominence as a favorite logic puzzle,

mathematicians and computer scientists alike have analyzed the game for

interesting properties. The large search space presents a challenge for both

generating and solving Sudoku puzzles without relying on techniques that simply

permute a valid puzzle. These permutations result in puzzles that are essentially

the same since they follow the same solution path. Many Sudoku generating or

solving programs rely on brute-force methods to avoid this pitfall, but this is

inefficient since there is no heuristic to navigate the huge search space. A nested

Monte Carlo tree search has some basis in brute-force methods, but guides the

search in order to achieve better results by using random games within nested

search stages. In this paper, we show that when the nested Monte Carlo search

algorithm is implemented for solving Samurai Sudoku, a version of Sudoku in

which a standard Sudoku puzzle is placed with four other standard Sudoku

puzzles overlapping on each of the corners, it performs better than a completely

random brute-force algorithm. Additionally, an improvement to the nested Monte

Carlo search is made by implementing a heuristic that is used at each level of

search.

Keywords: Sudoku, Samurai Sudoku, Monte Carlo search, rollouts, solver,

tree search

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 1

1 – Introduction

The popular puzzle game Sudoku was introduced to the world in Dell

Pencil Puzzles and Word Games in the May 1979 edition. The creator was

Howard Garns, who unfortunately never saw the success of his puzzle. He called

it “Number Place” when it was first published, but a magazine in Japan later

picked up the puzzle in 1984, naming it “Sudoku.” The puzzle did not become

popular until Wayne Gould wrote a computer program in 1997 that was able to

create Sudoku puzzles automatically and made a deal in 2004 with the London

Times to have the puzzles published. The following year, he struck a similar deal

with the Daily Telegraph, and the puzzle spread like wildfire from there.

However, Sudoku is actually a variation of Latin Squares, which were first

created in the Middle Ages, but later named and studied by Leonhard Euler. A

Latin Square is an n x n matrix that is filled with n values in such a way that each

symbol appears only once in each row and column. Clearly, Sudoku puzzles are a

subclass of Latin Squares, since they follow the same rules with an added

condition of dividing the grid into blocks in which each value must also appear

only once (Delahaye, 2006).

1.1 – Definitions

The puzzle is played on a Sudoku grid, which is a 9 x 9 grid that is divided

into 3 x 3 blocks with the numbers 1 through 9 placed exactly once in each row,

column, and block. To create the puzzle, numbers are removed strategically from

a selection of cells on the grid, and the player must solve the puzzle by deducing

the correct numbers that must be placed to restore the grid using the numbers left

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 2

on the grid, known as clues. Figure 1 gives a graphical description of the basic

terminology used in this paper for Sudoku. Cells are called neighbors if they share

a column, row, or block. Candidate sets are the lists of numbers that may be

placed in a non-clue cell without violating the rules of the puzzle. There are many

solving strategies that have been developed by players, ranging from simple

logical steps to complicated deductions.

Figure 1 – A cell is a single square within the puzzle (purple). A block is

one of the 3 x 3 squares within the puzzle (orange). Minor columns are

formed from 3 vertically adjacent cells in a block (green). Minor rows are

made up of 3 horizontally adjacent cells in a block (yellow). A row is

formed from 3 horizontally adjacent minor rows (blue), and a column is

made up of 3 vertically adjacent minor columns (red).

It is conventional for a puzzle to have a unique solution, and for aesthetic

purposes, the clues are often arranged in a symmetric pattern. Sudoku can be

generally extended from the 9 x 9 case, known as standard Sudoku, to any n
2
 x n

2

grid divided into n x n blocks filled with numbers 1 through n
2
, and many other

variations have been created by adding one or more conditions to the grid. The

particular variation used for the algorithm discussed in this paper is known as

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 3

Samurai Sudoku. Samurai Sudoku is composed of five standard Sudoku grids

arranged in a quincunx, such that the corners of the grids overlap. In most

Samurai Sudoku puzzles, each of the standard grids cannot be solved

independently. An example of a Samurai Sudoku puzzle is given in Figure 2.

Figure 2 – From Taking Sudoku Seriously (Rosenhouse & Taalman, 2011).

1.2 – Algorithms for Sudoku

Sudoku puzzles have piqued the interest of both mathematicians and

computer scientists alike. Solving Sudoku puzzles is an NP-complete problem,

shown by Yato in 2003, immediately placing it into an intriguing class of

problems (Lewis, 2007). This comes from one of the great questions of

mathematics and computer science: whether P = NP. Solution times in computer

science are given based on the number of variables that must be set in an

algorithm, denoted as N. In other words, P is the class of problems with solution

times that are proportional to some polynomial and NP is the class of problems

with solutions that can be verified in polynomial time. Polynomial time means

that the number of computations in the algorithm is bounded by a polynomial

function of N. It is unknown whether NP and P are equivalent. A majority of NP

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 4

problems are NP-complete, like Sudoku, which means that if a polynomial-time

solution can be developed for one instance, it can be used to solve all other

instances of that problem. This seems to go against intuition since it is theorized

that many of the problems belonging to NP are solved in exponential, rather than

polynomial, time. If it can be shown that P = NP, then the class of very difficult

problems actually has simple solutions that can be found (Hardesty, 2009). As

pointed out by Lewis, since solving Sudoku is an NP-complete problem, there is

no polynomial time algorithm that can be applied to every possible Sudoku puzzle

unless P = NP (Lewis, 2007).

To get some idea of how humongous this search space is, there are

6,670,903,752,021,072,936,960 (approximately 6.7 × 10
21

) possible, valid

Sudoku grids (Delahaye, 2006). Clearly the search space of solutions to a

particular puzzle is somewhat reduced from this, since the clues that are given

will rule out many grids, but on the other hand, the search space is also variable

depending on those clues. There are many websites devoted to Sudoku that rely

on algorithms to generate and solve puzzles so players can quickly load a puzzle

to play. For example, the puzzles used to test the algorithm discussed in this paper

were found on dkmGames.com and SamuraiSudoku.org, and each of these

websites provide the player with puzzles to play online and can generate the

solution. In order to provide an enjoyable playing experience and bring players

back again, efficient and accurate algorithms are desired. There are many possible

implementations that have been tried, but some have proven more effective than

others.

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 5

Most solving algorithms, the focus of this paper, fall into two camps:

using human solving strategies to deduce the correct solution or using search

methods with backtracking to find the correct solution. Each presents its own

benefits and drawbacks. Algorithms that imitate human solving patterns can be

useful when also implementing a Sudoku puzzle generator, as it ensures that the

solution can be obtained through logical steps rather than guessing. One such

method was designed by Boothby, Svec, and Zhang. They defined operations to

apply each solving strategy and then found the inverse of each operation

(Boothby, Svec, & Zhang, 2008). This enabled them to attempt to generate

Sudoku puzzles by using the inverse operations, with a goal in mind of being able

to create a puzzle using a certain set of solution strategies. They hoped this would

guarantee puzzles to be a certain difficulty by allowing only solving strategies

classified for that difficulty or lower (Boothby, Svec, & Zhang). Another example

is the hsolve algorithm created by Chang, Fan, and Sun. This approach

attempts to simulate the behavior of a human solving the puzzle while

simultaneously calculating a difficulty based on the solving strategies used

(Chang, Fan, & Sun, 2008). It starts with the simplest level of solving strategies,

applying each one to the grid to determine how many could possibly be applied to

the grid at the current state. It calculates how many strategies must be tried before

finding one that advances the solution. One of the possible valid solution

strategies is randomly selected and applied, and it continues through each level of

solving strategies until a solution is found. Again, the focus remains on using the

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 6

solving algorithm in combination with a generation algorithm (Chang, Fan, &

Sun).

Of course, sometimes the focus is not on generating Sudoku puzzles.

There is also interest in finding efficient algorithms that can navigate the

enormous search space of Sudoku puzzles. The simplest among the searching

methods use brute-force techniques. These may only place numbers randomly in

the puzzle, perhaps shuffling the numbers 1 through n
2
 and then checking for rule

violations in the rows, columns, and blocks. More commonly, these programs

employ backtracking algorithms. Numbers are randomly placed, but checks are

performed after each placement to find a valid number before moving to a new

cell. If it reaches a cell that has no valid placements available, it steps backward

and erases the previous placement, testing out a new number. It may take several

steps backward before it finds a valid solution (Delahaye, 2006).

An integer programming model, a binary integer program (BILP) more

specifically, for solving Sudoku was applied by Bartlett, Chartier, Langville, and

Rankin. This model uses decision variables that record whether each number is

present in the cell (Bartlett, Chartier, Langville, & Rankin, 2008). These variables

are defined as follows:

𝑥𝑖𝑗_𝑘 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑐𝑒𝑙𝑙 (𝑖, 𝑗) 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Each of the rules for Sudoku puzzles is formulated as a constraint for the

program. Their method poses solving the Sudoku puzzle as a constraint

programming problem and uses Matlab’s bintprog function, which finds a

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 7

solution through a series of LP-relaxation problems. They showed that this can

also be easily extended to variations of Sudoku, since each additional rule is

simply added to the set of constraints (Bartlett, Chartier, Langville, & Rankin).

Other methods approach solving Sudoku strictly as an optimization

problem. Lewis followed this path, using a representation of the grid, a

neighborhood operator, and a function for evaluating the grid, and he applied a

simulated annealing metaheuristic (Lewis, 2007). A Sudoku grid is considered

optimal if it is complete and satisfies all the rules. This method fills the grid with

random values, and the evaluation function calculates a cost (or how far from

optimal the grid is) based on the number of contradictions found in the grid.

While contradictions to the rules exist, the neighborhood operator is called on to

choose and then swap two non-clue cells within the same block to test if it

eliminates any contradictions. The application of the simulated annealing means it

searches for a neighbor with a lower cost so a solution is found quickly. This was

possibly the first application of a metaheuristic to a Sudoku solving algorithm,

and the author noted that it was successful at solving any Sudoku puzzle (Lewis).

Genetic, evolutionary, and many other types of search algorithms have all

been explored as well. One such evolutionary algorithm, Harmony Search

Algorithm, was developed by Geem (Geem, 2007). This algorithm was applied to

several optimization problems, including solving Sudoku. It is used to mimic the

behavior of musicians, based on factors such as memory consideration and

adjustments to pitch. Similar to the simulated annealing application, a cost is

calculated based on the number of contradictions in the puzzle and compared to

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 8

neighbor solutions in an effort to reach the solution with the lowest cost. While it

was not successful in solving every puzzle, it proves to be an interesting

application (Geem).

1.3 – Nested Monte Carlo Search

While using a metaheuristic to guide the search can be helpful in reducing

program run time, the exploration of the search space can also be guided by

making random choices while playing step-by-step through the game. A nested

Monte Carlo tree search works this way, creating a tree as a random choice of the

available options is made at each step towards finding a solution. At a given step,

or level, the search determines the correct choice to be played by searching the

lower steps. This method of guiding the search through successive nested levels

of game play is known as rollouts (Rosin, 2011). In the case of Sudoku, this

means placing a number in a cell and removing that number from all neighbor

cells. The grid is checked for contradictions caused by the random play of the

game to determine if the rollout was successful at this level. Although this could

be a lengthy search, the search space is reduced since the game is played

throughout the rollout, which in a sense is optimizing the game at each level of

search. Many other types of algorithms do not perform this optimization during

the search, but only at the first level of search (Cazenave, 2009).

There is some variation in how a Monte Carlo search algorithm may work.

The basic type of nested Monte Carlo search is known as Iterative Sampling,

which plays the game with simple random choices. Rollouts may be used to

improve the Monte Carlo search, and Cazenave notes that this was successful for

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 9

Tesauro and Galperin (Cazenave, 2009). A heuristic may be applied to the

algorithm as well. In some applications for other games, the heuristic was

adaptable, and the rollouts actually improve the heuristic as the search continues

through lower levels. A similar type of Monte Carlo search is a Reflexive Monte

Carlo search. Instead of playing an undetermined number of levels until a solution

or contradiction is reached, a static number of levels are played and evaluated

(Cazenave). The algorithm discussed in this paper is based off an Iterative

Sampling search, but uses nested rollouts and applies a basic heuristic to improve

the search performance.

2 – Algorithm Description

Previously, a similar algorithm was developed by Cazenave and applied to

Morpion Solitaire, SameGame, and 16 x 16 Sudoku (Cazenave, 2009). The

algorithm developed for this paper is applied to Samurai Sudoku to try a

somewhat different and more difficult application. Additionally, the nested Monte

Carlo search algorithm for Samurai Sudoku uses nested, recursive calls and

applies a simple heuristic at each level of the search to guide the rollouts. The set-

up function CreateGrid(n2, total grid size, clue set) is called

to create the grid. For simplicity, the representation of the grid is laid out as a

square, with cells that are not part of the grid set to 0. The function places the

clues in the grid as it creates it, and it calls on the evaluation function,

ClueEliminationCheck(n
2
, total grid size), which performs a

base level optimization by removing clue values from the candidate sets of

neighboring cells. This means that there are fewer branches that need to be

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 10

checked since values are removed before the search is started. The search is then

started with PerformSearch(n2, total grid size, stepCount),

tracking the current level of the rollout with stepCount.

CreateGrid(n
2
, total grid size, clue set)

for each cell, create candidate sets

if clue set has value > 0 for current cell

 set candidate set to size 1 with given

value

else

 set candidate set to size n
2
 with values

1 through n
2

ClueEliminationCheck(n
2
, total grid size)

stepCount = 0

PerformSearch(n
2
, total grid size, stepCount)

return grid

ClueEliminationCheck(n
2
, total grid size) executes the

‘game play’ that optimizes the grid at each level. For any cell with only one value

(either a placed number or a clue), that value is removed from the candidate sets

of all neighbors. Following each elimination check, the grid is evaluated for

contradictions; once a contradiction is found, the program sets a flag and

immediately breaks out of the current play. It does not calculate the number of

contradictions since this is not set up as an optimization problem, but simply

checks if one exists to see if the current search path is unsuccessful. Because there

is interdependence between the five standard Sudoku grids, the algorithm must go

through each grid individually to evaluate.

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 11

ClueEliminationCheck(n
2
, total grid size)

for each grid

 for each cell, if candidate set is size 1

 remove candidate set value from each

cell that is a row neighbor

 check for contradiction

 if contradiction

 break

remove candidate set value from each

cell that is a column neighbor

 check for contradiction

 if contradiction

 break

remove candidate set value from each

cell that is a block neighbor

 check for contradiction

 if contradiction

 break

return contradiction

PerformSearch(n
2
, total grid size, stepCount) is the

recursive search function. The heuristic is first applied, following the example of

Cazenave: the grid is checked for the smallest candidate set size that is greater

than one, and a cell is randomly chosen with a minimal candidate set (Cazenave,

2009). Before a random number from the candidate set is chosen and set in that

cell, the current state of the puzzle is stored. This allows the algorithm to travel

back along the current path through the tree when the rollout path terminates in

contradiction rather than solution. After the random play is made,

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 12

ClueEliminationCheck(n
2
, total grid size) is called. If a

contradiction is found, the grid is restored to the state at the previous level of

search and the contradictory value is removed from the candidate set. In terms of

the tree search, this means that it terminates the lower level search on the current

branch and moves to another branch that has not been explored yet. Since we are

choosing minimal candidate sets, it is possible that the candidate set would be

reduced to size one after removing a value, so the evaluation function is called

again in such a state to check if the remaining value causes a contradiction. If it

does, then the program needs to follow the path further back and remove the

previously set value. This repeats until a layer of search is found that does not

lead to a contradiction on the current leaf. Once that leaf is found, it proceeds to

start a new rollout from there by making a recursive call to

PerformSearch(n
2
, total grid size, stepCount).

PerformSearch(n
2
, total grid size, stepCount)

minimum = 10;

 for each cell

 if candidate set size < minimum

 minimum = candidate set size

 if minimum < 10

 for random cell

 if candidate set size = minimum

 store current grid and location of

random play

 choose random play

restoreGrid =

ClueEliminationCheck(n
2
, total grid

size)

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 13

 if restoreGrid = true

set grid to state before

random play and remove the

chosen value from candidate

set

if candidate set size = 1

restoreGrid =

ClueEliminationCheck(n
2
,

total grid size)

while restoreGrid = true and

candidate set size < 2

restoreGrid = false

set grid to previous state at

previous level and remove the

chosen value from candidate

set

if candidate set size = 1

restoreGrid =

ClueEliminationCheck(n
2
,

total grid size)

 if restoreGrid = false

 stepCount increases

 PerformSearch(n
2
, total grid

size, stepCount)

return

 Although cells with minimal candidate sets are chosen, this type of nested

search does not work like an optimization problem, where it is continuously

improving the result found. It is possible that a less optimal grid will be chosen in

the next layer of search. Using the Samurai Sudoku variation increases the

complexity of the algorithm since the search may follow a path that results in an

optimal grid for one of the five standard Sudoku grids, but as that path travels

through one of the other four, it may not lead to a solution due to the

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 14

interdependence between grids. Of course the increased size of the grid that must

be solved also complicates the solver, especially since it uses recursive calls,

which can be taxing on performance. However, since this interdependence plays a

role and since one grid can usually not be solved independently from the others, a

recursive function makes sense so that the nested layers can go as deep as needed

without fixing a bound.

3 – Analysis of Application to Samurai Sudoku

 The program performs well most of the time when solving Samurai

Sudoku puzzles. The algorithm always produced a correct solution when it was

able to solve the puzzle. However, there were ten puzzles that it could not solve

because the program crashed before a solution was found due to making too many

recursive calls for the program to track. Although most puzzles are constructed to

be logic solvable, a benefit of this method is that it does not rely on this

assumption. It does apply the most basic solving strategies to the grid to reduce

candidate set sizes, but these strategies are really just checking the constraints

applied to the grid by Sudoku rules. This allows for a reduction of the search

space by applying constraint satisfaction within the algorithm. Table 1 gives the

times to solve eighty grids of varying difficulty, where the difficulties that were

used are ‘easy’, ‘standard’, ‘hard’, and ‘tough’, and Figure 3 displays the run

times graphically. The computer used to run these puzzles is an HP laptop with 8

GB of memory and dual 1.9 GHz processors.

 # of Puzzles Average Time

(seconds)

Range of Time

(seconds)

Easy 20 0.127 0.001 – 2.423

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 15

Standard 20 43.638 0.062 – 247.042

Hard 20 438.443 0.904 – 1229.890

Tough 20 457.752 0.093 – 2440.220

All Puzzles 80 209.359 0.001 – 2440.220

Table 1: Run times for Samurai Sudoku

Figure 3: Distribution of run times

Run time for puzzles that were not solved are not factored into average

solve time. While the run time remains low for easy and standard puzzles, a large

jump in average time required to solve occurs when the difficulty increases past

standard. Since the difficulty of a Sudoku problem is bounded in a sense (because

it enforces a condition of logic solvability for a human player), the large jump run

time is not extremely problematic, although not ideal.

Interestingly, puzzles of any given difficulty were solved with a relatively

large range of run times. The difference in run time is likely due to the random

nature of the nested rollouts; the algorithm sometimes made ‘lucky’ random

choices to guide the rollouts or find a cell with a minimal candidate set. To

examine the effect of the randomness, one tough puzzle was chosen to be run 25

times. The run time range for this puzzle was 57.252 to 92.039 seconds, with an

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 16

average of 85.512 seconds and a median run time of 85.956 seconds. The variance

is 37.073, indicating that there is a fair amount of dispersion in the data set.

However, this is expected since the game play at each level of search is

randomized, and choosing a cell to make a play from is also randomized. Since a

cell can potentially be picked multiple times, including solved cells, it takes

longer on average to find a cell that meets the minimal candidate set requirement

as it approaches finding the solution of the puzzle.

3.1 – Comparison to other solvers

Comparing to a handful of other Sudoku solvers, the run time is

acceptable considering that the puzzle being solved is much larger. As mentioned

before, Cazenave implemented a similar algorithm for 16 x 16 Sudoku. For 100

Sudoku puzzles with 66% non-clue cells (compared to an average of 72% non-

clue cells for Samurai Sudoku), his algorithm had an average run time of 61.83

seconds, which is only about one-third of the Samurai Sudoku algorithm run time.

Of course, Samurai Sudoku puzzles are about 44% larger than those puzzles and

have multiple Sudoku grids with interdependence, so it is not a perfect

comparison. It is hard to say how much of the extra run time for this algorithm is

accounted for by the larger size and interdependence, but Cazenave’s nested

Monte Carlo search also implements memorization of best sequences, or the

sequences that lead to lower costs on average, which is likely a factor in his

improved run time (Cazenave, 2009). The simulated annealing algorithm

developed by Lewis had a more constant run time across difficulty levels. He

noted that for 9 x 9 standard Sudoku, the algorithm typically solved the puzzle in

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 17

about half a second, but for 16 x 16 standard Sudoku, the range of run time was 5

to 15 seconds. However, this program sometimes ended up ‘stuck’ and required

one or two restarts to achieve a solution (Lewis, 2007). Similarly, the Harmony

Search Algorithm took 3 to 38 seconds to solve most puzzles. Geem notes that his

algorithm could only solve the puzzle 33 out of 36 runs, which is similar to the

failure rate that the nested Monte Carlo algorithm for Samurai Sudoku faces.

However, the failures of the Harmony Search Algorithm were due to the program

becoming entrapped in a local optimum and timing out the search, whereas the

algorithm examined in this paper becomes ‘lost’ in the search; this will be

discussed further in Section 3.2. The median for the successfully solved puzzles

by Harmony Search Algorithm was 8 seconds, while the median for Samurai

Sudoku was 13.679 seconds (Geem, 2007). The median is quite good considering

that Harmony Search Algorithm was only tested on 9 x 9 Sudoku, and Samurai

Sudoku is around 4.5 times larger. However, the average and range of run time is

considerably longer, even with size taken into account. The results for the Binary

Integer program are similar in run time to the Harmony Search Algorithm, solving

a puzzle in 16.08 seconds. Unfortunately, only one puzzle was tested with this

method, so it is hard to say whether it is truly better or not (Bartlett, Chartier,

Langville, & Rankin, 2008).

Cazenave noted in his analysis that the most difficult problems to solve in

the 16 x 16 standard Sudoku case were those with 66% non-clue cells. Puzzles

outside this range were often over- or under-constrained, both leading to easily

successful searches. However, as seen in Figure 4, there does not seem to be

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 18

much correlation between the percentage of non-clue cells and run time for the

Samurai Sudoku algorithm.

Figure 4: Run time predicted by percentage of non-clue cells

Most of the puzzles have around 75% non-clue cells with a large range of

run times centered there, suggesting that this percentage of non-clue cells does not

guarantee a hard or easy puzzle for the algorithm. Puzzles with less than 50%

non-clue cells always ran quickly, suggesting that similar to Cazenave’s findings,

puzzles with too many clues were over-constrained and easy to solve (Cazenave,

2009).

It is obvious that the difficulty rating of the puzzle or the extreme ends of

the range of given clues affects run time, but what drives this difficulty level if not

the number of clues? Given that Samurai Sudoku generally will not be solvable

without working on the overlapping areas, perhaps the number of clues in the

overlapping areas of the quincunx layout is driving the run time increase. Figure 5

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 19

seems to suggest this is so; the run times are plotted against the number of clues

found in the overlapping areas.

Figure 5: Run time predicted by the number of clues in the overlapping areas

All the run times are low for high values of clues, and a peak is found for

puzzles in which 4 or fewer clues were given in overlapping areas. The unsolved

puzzles all had 1 to 4 clues in the overlapping areas, suggesting that it is not as

under-constrained as having 0 clues, but does not have enough constraints to

guide the search as when there are 5 or more clues. It is possible that a better

heuristic may improve the search significantly here if it can keep the search from

becoming ‘lost’ among the large number of possible rollouts.

3.2 – Drawbacks of the algorithm

There are pitfalls to be wary of with the nested Monte Carlo search as

applied to Samurai Sudoku. Since it relies on a recursive function call in the

search, it becomes strenuous when many nested rollouts are necessary. This leads

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 20

to an overflow of the call stack as the search depth and number of branches

increase too much, causing the program to crash before the algorithm can solve

the puzzle. Theoretically, if the size of the call stack was not a limitation, the

program could solve any puzzle it was fed. Since it does not rely on optimization

to find a solution, it has no risk of becoming stuck in a local optimum, which is

what caused the Harmony Search Algorithm to sometimes fail; theoretically, this

means that a ‘lucky’ run could reach the solution if there are correct random

choices more often throughout the game play (Geem, 2007).

The search comes to a stop once a solution has been found, so the

algorithm is also incapable of conclusively determining if multiple solutions exist

to the puzzle. Logic-based solvers have the advantage here, since multiple

solutions typically exist when sets of numbers can be swapped to create another

solution. Solving such a puzzle often ends with a set of cells that contain the same

candidate sets without any further solving strategies that can deterministically

place numbers in those cells; this is known as an unavoidable set (Vanpoucke,

2012). One cell can have a random number placed from its candidate set that then

determines the numbers that must be placed in the remaining cells. Since the

nested Monte Carlo search makes random choices at each level of game play, it

only needs to randomly choose one of the numbers that could lead to a correct

solution, and it will not step back to evaluate un-checked numbers. Of course,

adding this capability would also increase run time, and most algorithms of this

type have the same drawback. Depending on the intended use of the solver, this

could be considered a downside. A user intending to use it in combination with a

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 21

puzzle generator would not have a way to guarantee that the generator produces

uniquely solvable puzzles—only that that it produces a solvable one. Since the

game plays made during the search are random, the algorithm may be run many

times to attempt to find multiple solutions, but it is not guaranteed to find other

solutions if they exist or to find them in a timely manner.

4 – Future Work

 Remarkably, it seems that despite the Sudoku craze, very little work has

been done on Samurai Sudoku or even other variations. Many types of algorithms

could be attempted on Samurai Sudoku, such as genetic or evolutionary

algorithms, like Geem’s Harmony Search Algorithm, or any of the other ones

mentioned in this paper (Geem, 2007). It certainly provides a way to stress the

algorithm and reveal its limitations. Additionally, more research into equivalence

classes for Samurai Sudoku could reveal helpful information for future

algorithms, especially if focus is placed on examining how the overlapping areas

affect the search tree or solving process of the grid.

There is plenty of work that could be done with the nested Monte Carlo

search algorithm as well. As mentioned before, by applying a better heuristic, or

possibly multiple heuristics, the search can be guided closer to the rollouts that

will more quickly lead to a solution. If the program proceeds along the correct

rollouts more often, then less backtracking and fewer recursive calls are required.

This may reduce or even eliminate the stack overflow issue. Given the difference

in run time after accounting for the different type of puzzle being examined, using

memorization like Cazenave’s algorithm shows potential (Cazenave, 2009).

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 22

However, this must be approached carefully. Cazenave’s algorithm only needs to

consider one grid, while this algorithm needs to look at five grids with

interdependence. A better sequence on one grid may not translate well to another

grid within the puzzle. It may be worth it to examine whether certain sequences

are better on certain classes of Sudoku puzzles.

Sudoku grids can be considered “essentially the same,” or part of the same

equivalence class, if a mapping can be made from grid 1 to grid 2 using actions

that do not cause contradictions to the rules of Sudoku when applied to any given

grid. For example, rotating any Sudoku puzzle by multiples of 90
ᵒ
 results in a

puzzle within the same equivalence class. There are 5,472,730,538 equivalence

classes of Sudoku grids, making it a daunting task to examine whether the

performance of a sequence corresponds to certain equivalence classes (Chapman

& Rupert, 2012). The various grids that are part of a Samurai Sudoku grid may

come from distinct equivalence classes, so if sequences are better depending on

which equivalence class they are applied to, memorization would need to be

applied for each grid individually. Additionally, given that the overlapping areas

of the grid play such a pivotal role in the solution path for these puzzles, guiding

the search to start the nested rollouts from this area could potentially provide

significant improvement over the more random method currently used.

 The performance can likely be improved by applying additional solving

strategies to the algorithm. It currently only removes placed numbers from the

candidate sets of neighbor cells, whereas applying actual solving strategies could

potentially place more numbers and reduce the size of the candidate sets further

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 23

(Lewis, 2007). If more cells are solved or candidate set sizes are reduced, there

are fewer random choices (and thus fewer levels of nested search). Although

some extra computing time will be necessary to perform the solving strategies, it

is likely that the use of extra solving strategies will improve the run time overall

since each constraint applied reduces the overall search space (Bartlett, Chartier,

Langville, & Rankin, 2008). For example, the “Covering Set” solving strategy as

outlined in Boothby, Svec, and Zhang’s work, could be applied easily in a

computer program. This solving strategy checks for k neighbor cells whose

candidate sets contain the same k numbers; since these cells are neighbors, and

there are k such cells with the same k possibilities, all other shared neighbor cells

can remove those k numbers from their candidate sets (Boothby, Svec, & Zhang,

2008).

 If there was a desire to enhance the program to check for multiple

solutions as well as finding a solution, there could be some promise in examining

unavoidable sets. This concept was discussed in section 3.2, but this definition

from Vanpoucke (2012) states it more formally:

Definition (Vanpoucke) – Consider an n
2
 x n

2
 Sudoku grid S. A subset U of S is

called an unavoidable set if S\U has more than one completion to an n
2
 x n

2

Sudoku grid.

An unavoidable set of m cells has degree k if the puzzle must have at least k

values from the unavoidable set given as clues in order to be uniquely solvable.

Furthermore, Vanpoucke’s work (2012) gives us the following theorem:

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 24

Theorem (Vanpoucke) – Consider an n
2
 x n

2
 Sudoku grid S and suppose that U ⊆

S is an (m,k)-unavoidable set. Then we will need to add at least k elements from U

to S\U to obtain an n
2
 x n

2
 Sudoku puzzle with a unique completion. Moreover, if

V ⊆ S is an (m’,k’)-unavoidable set, such that U ∩ V = ∅, then U ∪ V is an

(m+m’,k+k’)-unavoidable set.

Vanpoucke points out that “if a set of clues does not intersect every

unavoidable set, then…there is more than one completion” (Vanpoucke, 2012, p.

21). Thus, if the potential unavoidable sets can be identified quickly and each of

these sets can be checked for k clues, the algorithm could identify whether the

puzzle could be solved uniquely. However, Vanpoucke (2012) notes that a

program written to find unavoidable sets was not fast enough when attempted

before, so improvements to this method would first be necessary (p. 22). With

future research though, this could become a feasible avenue to explore.

 In a more general sense, the program can likely be improved by making

changes to enhance efficiency. There may be programming languages that would

be better suited for this algorithm than C++. It could potentially improve run time

(although would not eliminate failures) to use a faster computer to run the solver.

The program currently uses vectors to store previous states of the grid and

locations that were used in play, which gives the program great flexibility for

managing the candidate sets, but requires the program to constantly resize these

variables. There could be a more efficient method of storage, perhaps using a

structure or class instead, that has not been attempted here. There are likely no

changes to the methods used, such as how it is checking the grid for

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 25

contradictions or choosing a minimal candidate set, that will significantly improve

the run time, but it may be worth some experimentation at a later date.

In earlier versions, the program started searching for a cell with a minimal

candidate set in the first cell of the representation of the grid, proceeding

systematically through the rows and columns. However, this version also failed to

solve a large number of more complicated puzzles; this is likely because larger

numbers of clues were concentrated in other areas of the puzzle, meaning that it

did not choose cells that would quickly determine values in neighbor cells and

thus required more steps to compute. When the program was revised to choose

cells from a randomly determined column and row, it was able to solve more

puzzles, but run time was driven up due to this randomness. The random choice of

cell is not guided at all, so it can choose cells multiple times or choose cells that

do not have a minimal candidate set. Particularly towards the end stages of a

search, where many cells have only one value, the computation time for choosing

an eligible cell increases significantly. Finding some balance between these two

methods would likely produce a program that is faster and able to solve more

puzzles.

5 – Conclusion

 This paper presents, to the author’s knowledge, the first application of a

nested Monte Carlo search algorithm to the Sudoku variation called Samurai

Sudoku. Although it was not entirely successful, it certainly solves the puzzles

much faster than a human is able to without the need for multiple iterations of the

program. These solutions are always correct when the program is able to handle

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 26

the number of recursive calls necessary to find it. Since there is so little work

done on Samurai Sudoku, it is difficult to say how successful this algorithm was

compared to previous work. Further examination of the overlapping areas and

how they affect the puzzle undoubtedly will lead to an improved search method.

Section 1.2 shows that there are many possible approaches to solving

Sudoku grids that each provide certain benefits and pitfalls, depending on the

desired use for the solver. Most notably, it is clear that algorithms can be

developed that can solve any Sudoku grid and any variation on Sudoku, although

there may be some limitations in technology for the more complicated cases.

There is generally a distinction made between algorithms using some type of

random search and algorithms using solving strategies to mimic human solving

techniques, but experimentation in combining these two approaches may be the

key to overcoming the limitations exhibited by this application. Similarly, looking

at advances in the mathematics behind Sudoku could lead to improvements in the

algorithms for solving and generating puzzles. In particular, examining the

equivalence classes and unavoidable sets shows promise in revealing more about

Sudoku that will guide future work. Continued exploration of the areas of interest

of both mathematicians and computer scientists alike will likely reveal much

more work to be done with Sudoku and its many variations.

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 27

References

Bartlett, A., Chartier, T., Langville, A., & Rankin, T. (2008). An Integer

Programming Model for the Sudoku Problem. Retrieved from

http://langvillea.people.cofc.edu/sudoku5.pdf

Boothby, T., Svec, L., & Zhang, T. (2008). Generating Sudoku Puzzles as an

Inverse Problem. Retrieved from

http://www.math.washington.edu/~morrow/mcm/team2306.pdf.

Cazenave, T. (2009). Nested Monte-Carlo Search. International Joint

Conferences on Artificial Intelligence Organization Proceedings (pp. 456-

461). Retrieved from http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-

09/paper/view/343.

Chang, C., Fan, Z., & Sun, Y. (2008). hsolve: A difficulty metric and puzzle

generator for Sudoku. Retrieved from

http://web.mit.edu/yisun/www/papers/sudoku.pdf.

Chapman, H., & Rupert, M. E. (2012). A Group-theoretic Approach to Human

Solving Strategies in Sudoku. Colonial Academic Alliance Undergraduate

Research Journal, 3, Article 3.

Delahaye, J.-P. (2006). The Science behind Sudoku. Scientific American, 81-87.

Free Online Samurai Sudoku. (2008). Retrieved from Samurai Sudoku:

http://www.samuraisudoku.org/online.php

Geem, Z. W. (2007). Harmony Search Algorithm for Solving Sudoku. In B.

Apolloni, R. Howlett, & L. Jain (Eds.), Knowledge-Based Intelligent

Information and Engineering Systems (Vol. 4692, pp. 371-378). Springer.

doi:10.1007/978-3-540-74819-9_46

Hardesty, L. (2009, 10 29). Explained: P vs. NP. Retrieved from MIT News: On

Campus and Around the World: http://news.mit.edu/2009/explainer-pnp

Lewis, R. (2007). Metaheuristics can Solve Sudoku Puzzles. Journal of

Heuristics, 13(4), 387-401.

Rosenhouse, J., & Taalman, L. (2011). Taking Sudoku Seriously. New York:

Oxford University Press.

Rosin, C. D. (2011, July 16-22). Nested Rollout Policy Adaptation for Monte

Carlo Tree Search. Retrieved from International Joint Conference on

Artificial Intelligence: http://ijcai-11.iiia.csic.es/program/paper/1356

Sudoku. (2015). Retrieved from dkmGames:

http://dkmgames.com/SudokuGames.htm

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 28

Vanpoucke, J. (2012). Mutually Orthogonal latin squares and their generalizations

(Master Thesis). Retrieved from

http://homepages.vub.ac.be/~jvpouke/MasterThesisMOLS.pdf

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 29

Appendix

The following is the content of main.cpp:

#include "SudokuSolver.h"

using namespace std;

int main()

{

 //Set the size of the grid and if playing

standard or samurai version

 int numBands = 9;

 int numTotalBands = (numBands * 2) +

sqrt(double(numBands));

 //Need 3 pieces of information for clues--column,

row, and value, so create 2D vector

 std::vector<std::vector<int> > clueSet;

 for (int iColumn = 0; iColumn < numTotalBands;

iColumn++)

 {

 std::vector<int> newRow(numTotalBands, 0);

 clueSet.push_back(newRow);

 }

//dkmgames.com #61743

 clueSet[0][2] = 3;

 clueSet[0][3] = 4;

 clueSet[0][8] = 7;

 clueSet[0][17] = 3;

 clueSet[1][5] = 8;

 clueSet[1][6] = 9;

 clueSet[1][14] = 9;

 clueSet[1][17] = 8;

 clueSet[2][1] = 5;

 clueSet[2][3] = 3;

 clueSet[2][4] = 7;

 clueSet[2][16] = 5;

 clueSet[2][18] = 6;

 clueSet[3][0] = 1;

 clueSet[3][4] = 5;

 clueSet[3][7] = 8;

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 30

 clueSet[3][13] = 4;

 clueSet[3][17] = 5;

 clueSet[3][20] = 7;

 clueSet[4][4] = 3;

 clueSet[4][14] = 3;

 clueSet[4][16] = 4;

 clueSet[4][19] = 2;

 clueSet[5][0] = 9;

 clueSet[5][1] = 2;

 clueSet[5][3] = 6;

 clueSet[5][15] = 2;

 clueSet[5][20] = 9;

 clueSet[6][15] = 7;

 clueSet[6][18] = 9;

 clueSet[6][19] = 3;

 clueSet[7][3] = 2;

 clueSet[7][5] = 9;

 clueSet[8][2] = 6;

 clueSet[8][3] = 7;

 clueSet[8][4] = 1;

 clueSet[8][12] = 3;

 clueSet[8][15] = 6;

 clueSet[8][18] = 5;

 clueSet[9][8] = 1;

 clueSet[10][11] = 9;

 clueSet[11][9] = 4;

 clueSet[11][11] = 2;

 clueSet[11][13] = 5;

 clueSet[12][1] = 5;

 clueSet[12][9] = 3;

 clueSet[12][17] = 1;

 clueSet[13][4] = 6;

 clueSet[13][9] = 8;

 clueSet[13][13] = 6;

 clueSet[13][14] = 2;

 clueSet[13][15] = 4;

 clueSet[13][19] = 5;

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 31

 clueSet[14][1] = 3;

 clueSet[14][3] = 5;

 clueSet[14][10] = 6;

 clueSet[14][14] = 5;

 clueSet[14][17] = 9;

 clueSet[14][20] = 8;

 clueSet[15][0] = 7;

 clueSet[15][2] = 2;

 clueSet[15][5] = 1;

 clueSet[15][12] = 5;

 clueSet[16][6] = 8;

 clueSet[16][7] = 1;

 clueSet[16][13] = 2;

 clueSet[16][19] = 4;

 clueSet[17][0] = 9;

 clueSet[17][5] = 7;

 clueSet[17][6] = 4;

 clueSet[17][14] = 4;

 clueSet[17][18] = 3;

 clueSet[17][19] = 8;

 clueSet[17][20] = 6;

 clueSet[18][1] = 7;

 clueSet[18][3] = 6;

 clueSet[18][4] = 3;

 clueSet[18][8] = 4;

 clueSet[18][15] = 7;

 clueSet[18][17] = 3;

 clueSet[19][0] = 4;

 clueSet[19][1] = 9;

 clueSet[19][13] = 1;

 clueSet[19][16] = 9;

 clueSet[19][18] = 6;

 clueSet[20][2] = 3;

 clueSet[20][8] = 2;

 clueSet[20][16] = 8;

 clueSet[20][18] = 5;

 clueSet[20][19] = 3;

 //Now create our grid object to be modified in

our function

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 32

 //Use a 3D array since cells can hold multiple

possible values as we search

 std::vector<std::vector<std::vector<int> > >

m_sudokuGrid;

 //Now that the grid is ready, start the timer &

then start the algorithm

 std::clock_t startTime = std::clock();

 m_sudokuGrid = CreateGrid(numBands,

numTotalBands, clueSet);

 std::clock_t endTime = std::clock();

 //Puzzle is now solved, so calculate the run time

 double runTime = (endTime - startTime) / (double)

CLOCKS_PER_SEC;

 //Print the solution and run time

 for (int iColumn = 0; iColumn < numTotalBands;

iColumn++)

 {

 ofstream outputFile;

 outputFile.open("solvedpuzzle.txt");

 outputFile << runTime << " seconds" << endl

<< endl;

 for (int iRow = 0; iRow < numTotalBands;

iRow++)

 {

 for (int iColumn = 0; iColumn <

numTotalBands; iColumn++)

 {

 if (m_sudokuGrid[iRow][iColumn][0]

== 0)

 {

 outputFile << " ";

 }

 else

 {

 outputFile <<

m_sudokuGrid[iRow][iColumn][0] << " ";

 }

 }

 outputFile << endl;

 }

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 33

 outputFile.close();

 }

 return 0;

}

 The following is the content of the header file:

#if !defined(SUDOKUSOLVER_H)

#define SUDOKUSOLVER_H (1)

#include <ctime>

#include <time.h>

#include <math.h>

#include <cstdio>

#include <string>

#include <vector>

#include <stdio.h>

#include <fstream>

#include <sstream>

#include <iomanip>

#include <iostream>

#include <algorithm>

#include <sys/utime.h>

//Functions

bool ClueEliminationCheck(int numBands, int

numTotalBands);

void PerformSearch(int numBands, int numTotalBands,

int currentStep);

std::vector<std::vector<std::vector<int> > >

CreateGrid(int numBands, int numTotalBands,

std::vector<std::vector<int> > clueSet);

#endif

 The following is the content of SudokuSolver.cpp:

#include "SudokuSolver.h"

//Create the Sudoku grids we'll use during the search

as well as vectors to store the info at each layer of

the search

//Use a temp grid as well so we can undo changes when

a contradiction is reached

std::vector <int> valuesSet;

std::vector<std::vector <int> > cellsSet;

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 34

std::vector<std::vector<std::vector<int> > >

sudokuGrid;

std::vector<std::vector<std::vector<std::vector<int> >

> > sudokuGridTemp;

std::vector<std::vector<std::vector<int> > >

CreateGrid(int numBands, int numTotalBands,

std::vector<std::vector<int> > clueSet)

{

 for (int iColumn = 0; iColumn < numTotalBands;

iColumn++)

 {

 //Create a 2D vector to hold each cell in a

row, which holds multiple values

 std::vector<std::vector<int> > newRow;

 for (int iRow = 0; iRow < numTotalBands;

iRow++)

 {

 //Each cell is its own vector to hold

the potential values in non-clue cells

 std::vector<int> newCell;

 //Areas on screen that aren't part of a

grid (since we use a square for simplicity) are set to

0

 //This will make the search skip over

them since there is only 1 value & it is not 1-9

 int bound1 = numBands - 1;

 int bound2 = numBands +

sqrt(double(numBands));

 int bound3 = numBands -

sqrt(double(numBands));

 int bound4 = (numTotalBands - 1) - (2 *

sqrt(double(numBands)));

 if (((iRow > bound1) && (iRow <

bound2)) && ((iColumn < bound3) || (iColumn > bound4))

)

 {

 newCell.push_back(0);

 }

 else if (((iColumn > bound1) &&

(iColumn < bound2)) && ((iRow < bound3) || (iRow >

bound4)))

 {

 newCell.push_back(0);

 }

 else

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 35

 {

 //If clueSet has a 0, there was no

clue, so fill in all possible values

 if (clueSet[iColumn][iRow] == 0)

 {

 for (int iClue = 0; iClue <

numBands; iClue++)

 {

 newCell.push_back(iClue

+ 1);

 }

 }

 //Otherwise it gets 1 value--the

clue value

 else

 {

 newCell.push_back(clueSet[iColumn][iRow]);

 }

 }

 //Add our newly created cell to the row

 newRow.push_back(newCell);

 }

 //Add our newly created row to the grids

 sudokuGrid.push_back(newRow);

 }

 //To make the search more efficient, we remove

possibilities ruled out by the clues

 bool setUpError = ClueEliminationCheck(numBands,

numTotalBands);

 if (setUpError == true)

 {

 std::cout << "Contradiction found in initial

set up. Please check clues give in main.cpp.";

 system("pause");

 }

 //If no errors, continue with the search

 int stepCount = 0;

 PerformSearch(numBands, numTotalBands,

stepCount);

 return sudokuGrid;

}

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 36

bool ClueEliminationCheck(int numBands, int

numTotalBands)

{

 //Grid 0 is top left grid; grid 1 is top right

grid; grid 2 is center grid

 //Grid 3 is bottom left grid; grid 4 is bottom

right grid

 bool contradiction = false;

 int valueCount[9] = {0,0,0,0,0,0,0,0,0};

 int rowStartingValues[5] = {0,0,6,12,12};

 int columnStartingValues[5] = {0,12,6,0,12};

 //Need to check each grid individually to make

sure clues are only eliminated within the correct grid

 for (int iGrid = 0; iGrid < 5; iGrid++)

 {

 for (int iColumn =

columnStartingValues[iGrid]; iColumn <

(columnStartingValues[iGrid] + numBands); iColumn++)

 {

 for (int iRow =

rowStartingValues[iGrid]; iRow <

(rowStartingValues[iGrid] + numBands); iRow++)

 {

 //If cell only contains a given

clue, remove that value from all other cells in the

row, column, & block

 if (

(sudokuGrid[iRow][iColumn].size() == 1) &&

(sudokuGrid[iRow][iColumn][0] != 0))

 {

 int value =

sudokuGrid[iRow][iColumn][0];

 //Move along the row removing

the value from each cell

 for (int jColumn =

columnStartingValues[iGrid]; jColumn <

(columnStartingValues[iGrid] + numBands); jColumn++)

 {

 if ((iColumn !=

jColumn) && (sudokuGrid[iRow][jColumn].size() > 1) &&

(std::binary_search(sudokuGrid[iRow][jColumn].begin(),

sudokuGrid[iRow][jColumn].end(), value) == true))

 {

 sudokuGrid[iRow][jColumn].erase(std::remove(sudok

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 37

uGrid[iRow][jColumn].begin(),

sudokuGrid[iRow][jColumn].end(), value));

 if

(sudokuGrid[iRow][jColumn].size() == 0)

 {

 contradiction

= true;

 break;

 }

 }

 else if

(sudokuGrid[iRow][jColumn].size() == 1)

 {

 int valueCheck =

sudokuGrid[iRow][jColumn][0];

 valueCount[valueCheck - 1]++;

 }

 }

 //Check for repeated values

 for (int iValue = 0; iValue <

numBands; iValue++)

 {

 if (valueCount[iValue] >

1)

 {

 contradiction =

true;

 }

 valueCount[iValue] = 0;

 }

 //Exit if reached a

contradiction

 if (contradiction == true)

 {

 break;

 }

 //Move along the column

removing the value from each cell

 for (int jRow =

rowStartingValues[iGrid]; jRow <

(rowStartingValues[iGrid] + numBands); jRow++)

 {

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 38

 if ((iRow != jRow) &&

(sudokuGrid[jRow][iColumn].size() > 1) &&

(std::binary_search(sudokuGrid[jRow][iColumn].begin(),

sudokuGrid[jRow][iColumn].end(), value) == true))

 {

 sudokuGrid[jRow][iColumn].erase(std::remove(sudok

uGrid[jRow][iColumn].begin(),

sudokuGrid[jRow][iColumn].end(), value));

 if

(sudokuGrid[jRow][iColumn].size() == 0)

 {

 contradiction

= true;

 break;

 }

 }

 else if

(sudokuGrid[jRow][iColumn].size() == 1)

 {

 int valueCheck =

sudokuGrid[jRow][iColumn][0];

 valueCount[valueCheck - 1]++;

 }

 }

 //Check for repeated values

 for (int iValue = 0; iValue <

numBands; iValue++)

 {

 if (valueCount[iValue] >

1)

 {

 contradiction =

true;

 }

 valueCount[iValue] = 0;

 }

 //Exit if reached a

contradiction

 if (contradiction == true)

 {

 break;

 }

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 39

 //Move through block removing

the value from each cell

 int rowMod = iRow %

int(sqrt(double(numBands)));

 int columnMod = iColumn %

int(sqrt(double(numBands)));

 for (int kRow = (iRow -

rowMod); kRow < (iRow + (3 - rowMod)); kRow++)

 {

 for (int kColumn =

(iColumn - columnMod); kColumn < (iColumn + (3 -

columnMod)); kColumn++)

 {

 if (

(sudokuGrid[kRow][kColumn].size() > 1) &&

(std::binary_search(sudokuGrid[kRow][kColumn].begin(),

sudokuGrid[kRow][kColumn].end(), value) == true))

 {

 sudokuGrid[kRow][kColumn].erase(std::remove(sudok

uGrid[kRow][kColumn].begin(),

sudokuGrid[kRow][kColumn].end(), value));

 if

(sudokuGrid[kRow][kColumn].size() == 0)

 {

 contradiction = true;

 break;

 }

 }

 else if

(sudokuGrid[kRow][kColumn].size() == 1)

 {

 int valueCheck

= sudokuGrid[kRow][kColumn][0];

 valueCount[valueCheck - 1]++;

 }

 }

 }

 //Check for repeated values

 for (int iValue = 0; iValue <

numBands; iValue++)

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 40

 {

 if (valueCount[iValue] >

1)

 {

 contradiction =

true;

 }

 valueCount[iValue] = 0;

 }

 //Exit if reached a

contradiction

 if (contradiction == true)

 {

 break;

 }

 }

 }

 //Exit this loop too if reached a

contradiction

 if (contradiction == true)

 {

 break;

 }

 }

 //Exit this loop too if reached a

contradiction

 if (contradiction == true)

 {

 break;

 }

 }

 return contradiction;

}

void PerformSearch(int numBands, int numTotalBands,

int currentStep)

{

 int minimum = 10;

 //Start minimum at 10, so if no cell has more

than 1 value, it stays at 10 which is clearly not a

possible state for a cell

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 41

 //Find cell with lowest number of clues to keep

the algorithm fast

 for (int iColumn = 0; iColumn < numTotalBands;

iColumn++)

 {

 for (int iRow = 0; iRow < numTotalBands;

iRow++)

 {

 if ((sudokuGrid[iRow][iColumn].size()

< minimum) && (sudokuGrid[iRow][iColumn].size() > 1))

 {

 minimum =

sudokuGrid[iRow][iColumn].size();

 }

 }

 }

 if (minimum < 10)

 {

 int iRowRand = rand();

 int iRow = iRowRand % numTotalBands;

 int iColumnRand = rand();

 int iColumn = iColumnRand % numTotalBands;

 while (sudokuGrid[iRow][iColumn].size() !=

minimum)

 {

 iRowRand = rand();

 iRow = iRowRand % numTotalBands;

 iColumnRand = rand();

 iColumn = iColumnRand % numTotalBands;

 }

 if (sudokuGrid[iRow][iColumn].size() ==

minimum)

 {

 //Save the current grid & location

being set

 sudokuGridTemp.push_back(sudokuGrid);

 std::vector <int> location;

 location.push_back(iRow);

 location.push_back(iColumn);

 cellsSet.push_back(location);

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 42

 //While cell has multiple

possibilities, randomly select one value to fill in

 int random = rand();

 int randomChoice = random %

sudokuGrid[iRow][iColumn].size();

 int value =

sudokuGrid[iRow][iColumn][randomChoice];

 valuesSet.push_back(value);

 //Change the cell to the randomly

selected value & check for contradictions

 sudokuGrid[iRow][iColumn].assign(1,

value);

 bool restoreGrid =

ClueEliminationCheck(numBands, numTotalBands);

 //If a contradiction was found, restore

the grid & erase the value that caused it

 if (restoreGrid == true)

 {

 sudokuGrid =

sudokuGridTemp[currentStep];

 sudokuGrid[iRow][iColumn].erase(std::remove(sudok

uGrid[iRow][iColumn].begin(),

sudokuGrid[iRow][iColumn].end(), value));

 sudokuGridTemp[currentStep] =

sudokuGrid;

 //If one possible value left, need

to check for contradiction

 if

(sudokuGrid[iRow][iColumn].size() == 1)

 {

 valuesSet[currentStep] =

sudokuGrid[iRow][iColumn][0];

 restoreGrid =

ClueEliminationCheck(numBands, numTotalBands);

 }

 }

 //If we did find a contradiction in the

last possible value, we need to step back 1 layer &

try again

 while ((restoreGrid == true) &&

(sudokuGrid[iRow][iColumn].size() < 2))

 {

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 43

 currentStep--;

 restoreGrid = false;

 iRow = cellsSet[currentStep][0];

 iColumn =

cellsSet[currentStep][1];

 //Restore grid to previous step's

state, erase the problematic value, & re-save the grid

 sudokuGrid =

sudokuGridTemp[currentStep];

 sudokuGrid[iRow][iColumn].erase(std::remove(sudok

uGrid[iRow][iColumn].begin(),

sudokuGrid[iRow][iColumn].end(),

valuesSet[currentStep]));

 sudokuGridTemp[currentStep] =

sudokuGrid;

 //Erase the saved info for the

step that led to a contradiction

 cellsSet.pop_back();

 valuesSet.pop_back();

 sudokuGridTemp.pop_back();

 //If one possible value left, need

to check for contradiction

 if

(sudokuGrid[iRow][iColumn].size() == 1)

 {

 valuesSet[currentStep] =

sudokuGrid[iRow][iColumn][0];

 restoreGrid =

ClueEliminationCheck(numBands, numTotalBands);

 }

 //If all values lead to

contradiction, need to step back another layer

 else if

(sudokuGrid[iRow][iColumn].size() == 0)

 {

 restoreGrid = true;

 }

 }

 //If no contradictions, start another

layer of search

 if (restoreGrid == false)

NESTED MONTE CARLO TREE SEARCH AS APPLIED TO SAMURAI SUDOKU 44

 {

 currentStep++;

 PerformSearch(numBands,

numTotalBands, currentStep);

 }

 }

 }

 return;

}

	Governors State University
	OPUS Open Portal to University Scholarship
	Spring 2016

	Nested Monte Carlo Tree Search as Applied to Samurai Sudoku
	Laura Finley
	Recommended Citation

	tmp.1464040392.pdf.UCwzD

