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Abstract 

As Sudoku has come into prominence as a favorite logic puzzle, 

mathematicians and computer scientists alike have analyzed the game for 

interesting properties. The large search space presents a challenge for both 

generating and solving Sudoku puzzles without relying on techniques that simply 

permute a valid puzzle. These permutations result in puzzles that are essentially 

the same since they follow the same solution path. Many Sudoku generating or 

solving programs rely on brute-force methods to avoid this pitfall, but this is 

inefficient since there is no heuristic to navigate the huge search space. A nested 

Monte Carlo tree search has some basis in brute-force methods, but guides the 

search in order to achieve better results by using random games within nested 

search stages. In this paper, we show that when the nested Monte Carlo search 

algorithm is implemented for solving Samurai Sudoku, a version of Sudoku in 

which a standard Sudoku puzzle is placed with four other standard Sudoku 

puzzles overlapping on each of the corners, it performs better than a completely 

random brute-force algorithm. Additionally, an improvement to the nested Monte 

Carlo search is made by implementing a heuristic that is used at each level of 

search. 

Keywords: Sudoku, Samurai Sudoku, Monte Carlo search, rollouts, solver, 

tree search 
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1 – Introduction 

The popular puzzle game Sudoku was introduced to the world in Dell 

Pencil Puzzles and Word Games in the May 1979 edition. The creator was 

Howard Garns, who unfortunately never saw the success of his puzzle. He called 

it “Number Place” when it was first published, but a magazine in Japan later 

picked up the puzzle in 1984, naming it “Sudoku.” The puzzle did not become 

popular until Wayne Gould wrote a computer program in 1997 that was able to 

create Sudoku puzzles automatically and made a deal in 2004 with the London 

Times to have the puzzles published. The following year, he struck a similar deal 

with the Daily Telegraph, and the puzzle spread like wildfire from there. 

However, Sudoku is actually a variation of Latin Squares, which were first 

created in the Middle Ages, but later named and studied by Leonhard Euler. A 

Latin Square is an n x n matrix that is filled with n values in such a way that each 

symbol appears only once in each row and column. Clearly, Sudoku puzzles are a 

subclass of Latin Squares, since they follow the same rules with an added 

condition of dividing the grid into blocks in which each value must also appear 

only once (Delahaye, 2006).  

1.1 – Definitions 

The puzzle is played on a Sudoku grid, which is a 9 x 9 grid that is divided 

into 3 x 3 blocks with the numbers 1 through 9 placed exactly once in each row, 

column, and block. To create the puzzle, numbers are removed strategically from 

a selection of cells on the grid, and the player must solve the puzzle by deducing 

the correct numbers that must be placed to restore the grid using the numbers left 
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on the grid, known as clues. Figure 1 gives a graphical description of the basic 

terminology used in this paper for Sudoku. Cells are called neighbors if they share 

a column, row, or block. Candidate sets are the lists of numbers that may be 

placed in a non-clue cell without violating the rules of the puzzle. There are many 

solving strategies that have been developed by players, ranging from simple 

logical steps to complicated deductions.  

 

Figure 1 – A cell is a single square within the puzzle (purple).  A block is 

one of the 3 x 3 squares within the puzzle (orange).  Minor columns are 

formed from 3 vertically adjacent cells in a block (green).  Minor rows are 

made up of 3 horizontally adjacent cells in a block (yellow).  A row is 

formed from 3 horizontally adjacent minor rows (blue), and a column is 

made up of 3 vertically adjacent minor columns (red). 

It is conventional for a puzzle to have a unique solution, and for aesthetic 

purposes, the clues are often arranged in a symmetric pattern. Sudoku can be 

generally extended from the 9 x 9 case, known as standard Sudoku, to any n
2
 x n

2
 

grid divided into n x n blocks filled with numbers 1 through n
2
, and many other 

variations have been created by adding one or more conditions to the grid. The 

particular variation used for the algorithm discussed in this paper is known as 
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Samurai Sudoku. Samurai Sudoku is composed of five standard Sudoku grids 

arranged in a quincunx, such that the corners of the grids overlap. In most 

Samurai Sudoku puzzles, each of the standard grids cannot be solved 

independently. An example of a Samurai Sudoku puzzle is given in Figure 2. 

 

Figure 2 – From Taking Sudoku Seriously (Rosenhouse & Taalman, 2011). 

1.2 – Algorithms for Sudoku 

Sudoku puzzles have piqued the interest of both mathematicians and 

computer scientists alike. Solving Sudoku puzzles is an NP-complete problem, 

shown by Yato in 2003, immediately placing it into an intriguing class of 

problems (Lewis, 2007). This comes from one of the great questions of 

mathematics and computer science: whether P = NP. Solution times in computer 

science are given based on the number of variables that must be set in an 

algorithm, denoted as N. In other words, P is the class of problems with solution 

times that are proportional to some polynomial and NP is the class of problems 

with solutions that can be verified in polynomial time. Polynomial time means 

that the number of computations in the algorithm is bounded by a polynomial 

function of N. It is unknown whether NP and P are equivalent. A majority of NP 
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problems are NP-complete, like Sudoku, which means that if a polynomial-time 

solution can be developed for one instance, it can be used to solve all other 

instances of that problem. This seems to go against intuition since it is theorized 

that many of the problems belonging to NP are solved in exponential, rather than 

polynomial, time. If it can be shown that P = NP, then the class of very difficult 

problems actually has simple solutions that can be found (Hardesty, 2009). As 

pointed out by Lewis, since solving Sudoku is an NP-complete problem, there is 

no polynomial time algorithm that can be applied to every possible Sudoku puzzle 

unless P = NP (Lewis, 2007).  

To get some idea of how humongous this search space is, there are 

6,670,903,752,021,072,936,960 (approximately 6.7 × 10
21

) possible, valid 

Sudoku grids (Delahaye, 2006). Clearly the search space of solutions to a 

particular puzzle is somewhat reduced from this, since the clues that are given 

will rule out many grids, but on the other hand, the search space is also variable 

depending on those clues. There are many websites devoted to Sudoku that rely 

on algorithms to generate and solve puzzles so players can quickly load a puzzle 

to play. For example, the puzzles used to test the algorithm discussed in this paper 

were found on dkmGames.com and SamuraiSudoku.org, and each of these 

websites provide the player with puzzles to play online and can generate the 

solution. In order to provide an enjoyable playing experience and bring players 

back again, efficient and accurate algorithms are desired. There are many possible 

implementations that have been tried, but some have proven more effective than 

others. 
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Most solving algorithms, the focus of this paper, fall into two camps: 

using human solving strategies to deduce the correct solution or using search 

methods with backtracking to find the correct solution. Each presents its own 

benefits and drawbacks. Algorithms that imitate human solving patterns can be 

useful when also implementing a Sudoku puzzle generator, as it ensures that the 

solution can be obtained through logical steps rather than guessing. One such 

method was designed by Boothby, Svec, and Zhang. They defined operations to 

apply each solving strategy and then found the inverse of each operation 

(Boothby, Svec, & Zhang, 2008). This enabled them to attempt to generate 

Sudoku puzzles by using the inverse operations, with a goal in mind of being able 

to create a puzzle using a certain set of solution strategies. They hoped this would 

guarantee puzzles to be a certain difficulty by allowing only solving strategies 

classified for that difficulty or lower (Boothby, Svec, & Zhang). Another example 

is the hsolve algorithm created by Chang, Fan, and Sun. This approach 

attempts to simulate the behavior of a human solving the puzzle while 

simultaneously calculating a difficulty based on the solving strategies used 

(Chang, Fan, & Sun, 2008). It starts with the simplest level of solving strategies, 

applying each one to the grid to determine how many could possibly be applied to 

the grid at the current state. It calculates how many strategies must be tried before 

finding one that advances the solution. One of the possible valid solution 

strategies is randomly selected and applied, and it continues through each level of 

solving strategies until a solution is found. Again, the focus remains on using the 
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solving algorithm in combination with a generation algorithm (Chang, Fan, & 

Sun). 

Of course, sometimes the focus is not on generating Sudoku puzzles. 

There is also interest in finding efficient algorithms that can navigate the 

enormous search space of Sudoku puzzles. The simplest among the searching 

methods use brute-force techniques. These may only place numbers randomly in 

the puzzle, perhaps shuffling the numbers 1 through n
2
 and then checking for rule 

violations in the rows, columns, and blocks. More commonly, these programs 

employ backtracking algorithms. Numbers are randomly placed, but checks are 

performed after each placement to find a valid number before moving to a new 

cell. If it reaches a cell that has no valid placements available, it steps backward 

and erases the previous placement, testing out a new number. It may take several 

steps backward before it finds a valid solution (Delahaye, 2006).  

An integer programming model, a binary integer program (BILP) more 

specifically, for solving Sudoku was applied by Bartlett, Chartier, Langville, and 

Rankin. This model uses decision variables that record whether each number is 

present in the cell (Bartlett, Chartier, Langville, & Rankin, 2008). These variables 

are defined as follows: 

𝑥𝑖𝑗_𝑘 =  {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑐𝑒𝑙𝑙 (𝑖, 𝑗) 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Each of the rules for Sudoku puzzles is formulated as a constraint for the 

program. Their method poses solving the Sudoku puzzle as a constraint 

programming problem and uses Matlab’s bintprog function, which finds a 
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solution through a series of LP-relaxation problems. They showed that this can 

also be easily extended to variations of Sudoku, since each additional rule is 

simply added to the set of constraints (Bartlett, Chartier, Langville, & Rankin).  

Other methods approach solving Sudoku strictly as an optimization 

problem. Lewis followed this path, using a representation of the grid, a 

neighborhood operator, and a function for evaluating the grid, and he applied a 

simulated annealing metaheuristic (Lewis, 2007). A Sudoku grid is considered 

optimal if it is complete and satisfies all the rules. This method fills the grid with 

random values, and the evaluation function calculates a cost (or how far from 

optimal the grid is) based on the number of contradictions found in the grid. 

While contradictions to the rules exist, the neighborhood operator is called on to 

choose and then swap two non-clue cells within the same block to test if it 

eliminates any contradictions. The application of the simulated annealing means it 

searches for a neighbor with a lower cost so a solution is found quickly. This was 

possibly the first application of a metaheuristic to a Sudoku solving algorithm, 

and the author noted that it was successful at solving any Sudoku puzzle (Lewis).  

Genetic, evolutionary, and many other types of search algorithms have all 

been explored as well. One such evolutionary algorithm, Harmony Search 

Algorithm, was developed by Geem (Geem, 2007). This algorithm was applied to 

several optimization problems, including solving Sudoku. It is used to mimic the 

behavior of musicians, based on factors such as memory consideration and 

adjustments to pitch. Similar to the simulated annealing application, a cost is 

calculated based on the number of contradictions in the puzzle and compared to 
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neighbor solutions in an effort to reach the solution with the lowest cost. While it 

was not successful in solving every puzzle, it proves to be an interesting 

application (Geem).  

1.3 – Nested Monte Carlo Search 

While using a metaheuristic to guide the search can be helpful in reducing 

program run time, the exploration of the search space can also be guided by 

making random choices while playing step-by-step through the game. A nested 

Monte Carlo tree search works this way, creating a tree as a random choice of the 

available options is made at each step towards finding a solution. At a given step, 

or level, the search determines the correct choice to be played by searching the 

lower steps. This method of guiding the search through successive nested levels 

of game play is known as rollouts (Rosin, 2011). In the case of Sudoku, this 

means placing a number in a cell and removing that number from all neighbor 

cells. The grid is checked for contradictions caused by the random play of the 

game to determine if the rollout was successful at this level. Although this could 

be a lengthy search, the search space is reduced since the game is played 

throughout the rollout, which in a sense is optimizing the game at each level of 

search. Many other types of algorithms do not perform this optimization during 

the search, but only at the first level of search (Cazenave, 2009).  

There is some variation in how a Monte Carlo search algorithm may work. 

The basic type of nested Monte Carlo search is known as Iterative Sampling, 

which plays the game with simple random choices. Rollouts may be used to 

improve the Monte Carlo search, and Cazenave notes that this was successful for 
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Tesauro and Galperin (Cazenave, 2009). A heuristic may be applied to the 

algorithm as well. In some applications for other games, the heuristic was 

adaptable, and the rollouts actually improve the heuristic as the search continues 

through lower levels. A similar type of Monte Carlo search is a Reflexive Monte 

Carlo search. Instead of playing an undetermined number of levels until a solution 

or contradiction is reached, a static number of levels are played and evaluated 

(Cazenave). The algorithm discussed in this paper is based off an Iterative 

Sampling search, but uses nested rollouts and applies a basic heuristic to improve 

the search performance. 

2 – Algorithm Description 

Previously, a similar algorithm was developed by Cazenave and applied to 

Morpion Solitaire, SameGame, and 16 x 16 Sudoku (Cazenave, 2009). The 

algorithm developed for this paper is applied to Samurai Sudoku to try a 

somewhat different and more difficult application. Additionally, the nested Monte 

Carlo search algorithm for Samurai Sudoku uses nested, recursive calls and 

applies a simple heuristic at each level of the search to guide the rollouts. The set-

up function CreateGrid(n2, total grid size, clue set) is called 

to create the grid. For simplicity, the representation of the grid is laid out as a 

square, with cells that are not part of the grid set to 0. The function places the 

clues in the grid as it creates it, and it calls on the evaluation function, 

ClueEliminationCheck(n
2
, total grid size), which performs a 

base level optimization by removing clue values from the candidate sets of 

neighboring cells. This means that there are fewer branches that need to be 
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checked since values are removed before the search is started. The search is then 

started with PerformSearch(n2, total grid size, stepCount), 

tracking the current level of the rollout with stepCount. 

CreateGrid(n
2
, total grid size, clue set) 

for each cell, create candidate sets 

if clue set has value > 0 for current cell 

 set candidate set to size 1 with given 

value 

else 

 set candidate set to size n
2
 with values 

1 through n
2
 

 

ClueEliminationCheck(n
2
, total grid size) 

stepCount = 0 

PerformSearch(n
2
, total grid size, stepCount) 

return grid 

ClueEliminationCheck(n
2
, total grid size) executes the 

‘game play’ that optimizes the grid at each level. For any cell with only one value 

(either a placed number or a clue), that value is removed from the candidate sets 

of all neighbors. Following each elimination check, the grid is evaluated for 

contradictions; once a contradiction is found, the program sets a flag and 

immediately breaks out of the current play. It does not calculate the number of 

contradictions since this is not set up as an optimization problem, but simply 

checks if one exists to see if the current search path is unsuccessful. Because there 

is interdependence between the five standard Sudoku grids, the algorithm must go 

through each grid individually to evaluate. 
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ClueEliminationCheck(n
2
, total grid size) 

for each grid 

 for each cell, if candidate set is size 1 

  remove candidate set value from each 

cell that is a row neighbor 

  check for contradiction 

  if contradiction 

   break 

remove candidate set value from each 

cell that is a column  neighbor 

  check for contradiction 

  if contradiction 

   break 

remove candidate set value from each 

cell that is a block  neighbor 

  check for contradiction 

  if contradiction 

   break 

return contradiction 

PerformSearch(n
2
, total grid size, stepCount) is the 

recursive search function. The heuristic is first applied, following the example of 

Cazenave: the grid is checked for the smallest candidate set size that is greater 

than one, and a cell is randomly chosen with a minimal candidate set (Cazenave, 

2009). Before a random number from the candidate set is chosen and set in that 

cell, the current state of the puzzle is stored. This allows the algorithm to travel 

back along the current path through the tree when the rollout path terminates in 

contradiction rather than solution. After the random play is made, 
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ClueEliminationCheck(n
2
, total grid size) is called. If a 

contradiction is found, the grid is restored to the state at the previous level of 

search and the contradictory value is removed from the candidate set. In terms of 

the tree search, this means that it terminates the lower level search on the current 

branch and moves to another branch that has not been explored yet. Since we are 

choosing minimal candidate sets, it is possible that the candidate set would be 

reduced to size one after removing a value, so the evaluation function is called 

again in such a state to check if the remaining value causes a contradiction. If it 

does, then the program needs to follow the path further back and remove the 

previously set value. This repeats until a layer of search is found that does not 

lead to a contradiction on the current leaf. Once that leaf is found, it proceeds to 

start a new rollout from there by making a recursive call to 

PerformSearch(n
2
, total grid size, stepCount). 

PerformSearch(n
2
, total grid size, stepCount) 

minimum = 10; 

 for each cell 

  if candidate set size < minimum 

   minimum = candidate set size 

 if minimum < 10 

  for random cell 

   if candidate set size = minimum 

    store current grid and location of 

random play 

    choose random play 

restoreGrid = 

ClueEliminationCheck(n
2
, total grid 

size) 
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    if restoreGrid = true 

set grid to state before 

random play and remove the 

chosen value from candidate 

set 

if candidate set size = 1 

restoreGrid = 

ClueEliminationCheck(n
2
, 

total grid size) 

while restoreGrid = true and 

candidate set size < 2 

restoreGrid = false 

set grid to previous state at 

previous level and remove the 

chosen value from candidate 

set 

if candidate set size = 1 

restoreGrid = 

ClueEliminationCheck(n
2
, 

total grid size) 

    if restoreGrid = false 

     stepCount increases 

     PerformSearch(n
2
, total grid 

size, stepCount) 

return 

 Although cells with minimal candidate sets are chosen, this type of nested 

search does not work like an optimization problem, where it is continuously 

improving the result found. It is possible that a less optimal grid will be chosen in 

the next layer of search. Using the Samurai Sudoku variation increases the 

complexity of the algorithm since the search may follow a path that results in an 

optimal grid for one of the five standard Sudoku grids, but as that path travels 

through one of the other four, it may not lead to a solution due to the 
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interdependence between grids. Of course the increased size of the grid that must 

be solved also complicates the solver, especially since it uses recursive calls, 

which can be taxing on performance. However, since this interdependence plays a 

role and since one grid can usually not be solved independently from the others, a 

recursive function makes sense so that the nested layers can go as deep as needed 

without fixing a bound.  

3 – Analysis of Application to Samurai Sudoku 

 The program performs well most of the time when solving Samurai 

Sudoku puzzles. The algorithm always produced a correct solution when it was 

able to solve the puzzle. However, there were ten puzzles that it could not solve 

because the program crashed before a solution was found due to making too many 

recursive calls for the program to track. Although most puzzles are constructed to 

be logic solvable, a benefit of this method is that it does not rely on this 

assumption. It does apply the most basic solving strategies to the grid to reduce 

candidate set sizes, but these strategies are really just checking the constraints 

applied to the grid by Sudoku rules. This allows for a reduction of the search 

space by applying constraint satisfaction within the algorithm. Table 1 gives the 

times to solve eighty grids of varying difficulty, where the difficulties that were 

used are ‘easy’, ‘standard’, ‘hard’, and ‘tough’, and Figure 3 displays the run 

times graphically. The computer used to run these puzzles is an HP laptop with 8 

GB of memory and dual 1.9 GHz processors. 

 # of Puzzles Average Time 

(seconds) 

Range of Time 

(seconds) 

Easy 20 0.127 0.001 – 2.423 
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Standard 20 43.638 0.062 – 247.042 

Hard 20 438.443 0.904 – 1229.890 

Tough 20 457.752 0.093 – 2440.220 

All Puzzles 80 209.359 0.001 – 2440.220 

Table 1: Run times for Samurai Sudoku 

Figure 3: Distribution of run times 

Run time for puzzles that were not solved are not factored into average 

solve time. While the run time remains low for easy and standard puzzles, a large 

jump in average time required to solve occurs when the difficulty increases past 

standard. Since the difficulty of a Sudoku problem is bounded in a sense (because 

it enforces a condition of logic solvability for a human player), the large jump run 

time is not extremely problematic, although not ideal.  

Interestingly, puzzles of any given difficulty were solved with a relatively 

large range of run times. The difference in run time is likely due to the random 

nature of the nested rollouts; the algorithm sometimes made ‘lucky’ random 

choices to guide the rollouts or find a cell with a minimal candidate set. To 

examine the effect of the randomness, one tough puzzle was chosen to be run 25 

times. The run time range for this puzzle was 57.252 to 92.039 seconds, with an 
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average of 85.512 seconds and a median run time of 85.956 seconds. The variance 

is 37.073, indicating that there is a fair amount of dispersion in the data set. 

However, this is expected since the game play at each level of search is 

randomized, and choosing a cell to make a play from is also randomized. Since a 

cell can potentially be picked multiple times, including solved cells, it takes 

longer on average to find a cell that meets the minimal candidate set requirement 

as it approaches finding the solution of the puzzle. 

3.1 – Comparison to other solvers 

Comparing to a handful of other Sudoku solvers, the run time is 

acceptable considering that the puzzle being solved is much larger. As mentioned 

before, Cazenave implemented a similar algorithm for 16 x 16 Sudoku. For 100 

Sudoku puzzles with 66% non-clue cells (compared to an average of 72% non-

clue cells for Samurai Sudoku), his algorithm had an average run time of 61.83 

seconds, which is only about one-third of the Samurai Sudoku algorithm run time. 

Of course, Samurai Sudoku puzzles are about 44% larger than those puzzles and 

have multiple Sudoku grids with interdependence, so it is not a perfect 

comparison. It is hard to say how much of the extra run time for this algorithm is 

accounted for by the larger size and interdependence, but Cazenave’s nested 

Monte Carlo search also implements memorization of best sequences, or the 

sequences that lead to lower costs on average, which is likely a factor in his 

improved run time (Cazenave, 2009). The simulated annealing algorithm 

developed by Lewis had a more constant run time across difficulty levels. He 

noted that for 9 x 9 standard Sudoku, the algorithm typically solved the puzzle in 
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about half a second, but for 16 x 16 standard Sudoku, the range of run time was 5 

to 15 seconds. However, this program sometimes ended up ‘stuck’ and required 

one or two restarts to achieve a solution (Lewis, 2007). Similarly, the Harmony 

Search Algorithm took 3 to 38 seconds to solve most puzzles. Geem notes that his 

algorithm could only solve the puzzle 33 out of 36 runs, which is similar to the 

failure rate that the nested Monte Carlo algorithm for Samurai Sudoku faces. 

However, the failures of the Harmony Search Algorithm were due to the program 

becoming entrapped in a local optimum and timing out the search, whereas the 

algorithm examined in this paper becomes ‘lost’ in the search; this will be 

discussed further in Section 3.2. The median for the successfully solved puzzles 

by Harmony Search Algorithm was 8 seconds, while the median for Samurai 

Sudoku was 13.679 seconds (Geem, 2007). The median is quite good considering 

that Harmony Search Algorithm was only tested on 9 x 9 Sudoku, and Samurai 

Sudoku is around 4.5 times larger. However, the average and range of run time is 

considerably longer, even with size taken into account. The results for the Binary 

Integer program are similar in run time to the Harmony Search Algorithm, solving 

a puzzle in 16.08 seconds. Unfortunately, only one puzzle was tested with this 

method, so it is hard to say whether it is truly better or not (Bartlett, Chartier, 

Langville, & Rankin, 2008). 

Cazenave noted in his analysis that the most difficult problems to solve in 

the 16 x 16 standard Sudoku case were those with 66% non-clue cells. Puzzles 

outside this range were often over- or under-constrained, both leading to easily 

successful searches. However, as seen in Figure 4, there does not seem to be 
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much correlation between the percentage of non-clue cells and run time for the 

Samurai Sudoku algorithm. 

 

Figure 4: Run time predicted by percentage of non-clue cells 

Most of the puzzles have around 75% non-clue cells with a large range of 

run times centered there, suggesting that this percentage of non-clue cells does not 

guarantee a hard or easy puzzle for the algorithm. Puzzles with less than 50% 

non-clue cells always ran quickly, suggesting that similar to Cazenave’s findings, 

puzzles with too many clues were over-constrained and easy to solve (Cazenave, 

2009). 

It is obvious that the difficulty rating of the puzzle or the extreme ends of 

the range of given clues affects run time, but what drives this difficulty level if not 

the number of clues? Given that Samurai Sudoku generally will not be solvable 

without working on the overlapping areas, perhaps the number of clues in the 

overlapping areas of the quincunx layout is driving the run time increase. Figure 5 
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seems to suggest this is so; the run times are plotted against the number of clues 

found in the overlapping areas. 

 

Figure 5: Run time predicted by the number of clues in the overlapping areas 

All the run times are low for high values of clues, and a peak is found for 

puzzles in which 4 or fewer clues were given in overlapping areas. The unsolved 

puzzles all had 1 to 4 clues in the overlapping areas, suggesting that it is not as 

under-constrained as having 0 clues, but does not have enough constraints to 

guide the search as when there are 5 or more clues. It is possible that a better 

heuristic may improve the search significantly here if it can keep the search from 

becoming ‘lost’ among the large number of possible rollouts. 

3.2 – Drawbacks of the algorithm 

There are pitfalls to be wary of with the nested Monte Carlo search as 

applied to Samurai Sudoku. Since it relies on a recursive function call in the 

search, it becomes strenuous when many nested rollouts are necessary. This leads 
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to an overflow of the call stack as the search depth and number of branches 

increase too much, causing the program to crash before the algorithm can solve 

the puzzle. Theoretically, if the size of the call stack was not a limitation, the 

program could solve any puzzle it was fed. Since it does not rely on optimization 

to find a solution, it has no risk of becoming stuck in a local optimum, which is 

what caused the Harmony Search Algorithm to sometimes fail; theoretically, this 

means that a ‘lucky’ run could reach the solution if there are correct random 

choices more often throughout the game play (Geem, 2007).  

The search comes to a stop once a solution has been found, so the 

algorithm is also incapable of conclusively determining if multiple solutions exist 

to the puzzle. Logic-based solvers have the advantage here, since multiple 

solutions typically exist when sets of numbers can be swapped to create another 

solution. Solving such a puzzle often ends with a set of cells that contain the same 

candidate sets without any further solving strategies that can deterministically 

place numbers in those cells; this is known as an unavoidable set (Vanpoucke, 

2012). One cell can have a random number placed from its candidate set that then 

determines the numbers that must be placed in the remaining cells. Since the 

nested Monte Carlo search makes random choices at each level of game play, it 

only needs to randomly choose one of the numbers that could lead to a correct 

solution, and it will not step back to evaluate un-checked numbers. Of course, 

adding this capability would also increase run time, and most algorithms of this 

type have the same drawback. Depending on the intended use of the solver, this 

could be considered a downside. A user intending to use it in combination with a 
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puzzle generator would not have a way to guarantee that the generator produces 

uniquely solvable puzzles—only that that it produces a solvable one. Since the 

game plays made during the search are random, the algorithm may be run many 

times to attempt to find multiple solutions, but it is not guaranteed to find other 

solutions if they exist or to find them in a timely manner. 

4 – Future Work 

 Remarkably, it seems that despite the Sudoku craze, very little work has 

been done on Samurai Sudoku or even other variations. Many types of algorithms 

could be attempted on Samurai Sudoku, such as genetic or evolutionary 

algorithms, like Geem’s Harmony Search Algorithm, or any of the other ones 

mentioned in this paper (Geem, 2007). It certainly provides a way to stress the 

algorithm and reveal its limitations. Additionally, more research into equivalence 

classes for Samurai Sudoku could reveal helpful information for future 

algorithms, especially if focus is placed on examining how the overlapping areas 

affect the search tree or solving process of the grid.  

There is plenty of work that could be done with the nested Monte Carlo 

search algorithm as well. As mentioned before, by applying a better heuristic, or 

possibly multiple heuristics, the search can be guided closer to the rollouts that 

will more quickly lead to a solution. If the program proceeds along the correct 

rollouts more often, then less backtracking and fewer recursive calls are required. 

This may reduce or even eliminate the stack overflow issue. Given the difference 

in run time after accounting for the different type of puzzle being examined, using 

memorization like Cazenave’s algorithm shows potential (Cazenave, 2009). 
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However, this must be approached carefully. Cazenave’s algorithm only needs to 

consider one grid, while this algorithm needs to look at five grids with 

interdependence. A better sequence on one grid may not translate well to another 

grid within the puzzle. It may be worth it to examine whether certain sequences 

are better on certain classes of Sudoku puzzles.  

Sudoku grids can be considered “essentially the same,” or part of the same 

equivalence class, if a mapping can be made from grid 1 to grid 2 using actions 

that do not cause contradictions to the rules of Sudoku when applied to any given 

grid. For example, rotating any Sudoku puzzle by multiples of 90
ᵒ
 results in a 

puzzle within the same equivalence class. There are 5,472,730,538 equivalence 

classes of Sudoku grids, making it a daunting task to examine whether the 

performance of a sequence corresponds to certain equivalence classes (Chapman 

& Rupert, 2012). The various grids that are part of a Samurai Sudoku grid may 

come from distinct equivalence classes, so if sequences are better depending on 

which equivalence class they are applied to, memorization would need to be 

applied for each grid individually. Additionally, given that the overlapping areas 

of the grid play such a pivotal role in the solution path for these puzzles, guiding 

the search to start the nested rollouts from this area could potentially provide 

significant improvement over the more random method currently used.  

 The performance can likely be improved by applying additional solving 

strategies to the algorithm. It currently only removes placed numbers from the 

candidate sets of neighbor cells, whereas applying actual solving strategies could 

potentially place more numbers and reduce the size of the candidate sets further 
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(Lewis, 2007). If more cells are solved or candidate set sizes are reduced, there 

are fewer random choices (and thus fewer levels of nested search). Although 

some extra computing time will be necessary to perform the solving strategies, it 

is likely that the use of extra solving strategies will improve the run time overall 

since each constraint applied reduces the overall search space (Bartlett, Chartier, 

Langville, & Rankin, 2008). For example, the “Covering Set” solving strategy as 

outlined in Boothby, Svec, and Zhang’s work, could be applied easily in a 

computer program. This solving strategy checks for k neighbor cells whose 

candidate sets contain the same k numbers; since these cells are neighbors, and 

there are k such cells with the same k possibilities, all other shared neighbor cells 

can remove those k numbers from their candidate sets (Boothby, Svec, & Zhang, 

2008).  

 If there was a desire to enhance the program to check for multiple 

solutions as well as finding a solution, there could be some promise in examining 

unavoidable sets. This concept was discussed in section 3.2, but this definition 

from Vanpoucke (2012) states it more formally: 

Definition (Vanpoucke) – Consider an n
2
 x n

2
 Sudoku grid S. A subset U of S is 

called an unavoidable set if S\U has more than one completion to an n
2
 x n

2
 

Sudoku grid. 

An unavoidable set of m cells has degree k if the puzzle must have at least k 

values from the unavoidable set given as clues in order to be uniquely solvable. 

Furthermore, Vanpoucke’s work (2012) gives us the following theorem: 
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Theorem (Vanpoucke) – Consider an n
2
 x n

2
 Sudoku grid S and suppose that U ⊆ 

S is an (m,k)-unavoidable set. Then we will need to add at least k elements from U 

to S\U to obtain an n
2
 x n

2
 Sudoku puzzle with a unique completion. Moreover, if 

V ⊆ S is an (m’,k’)-unavoidable set, such that U ∩ V = ∅, then U ∪ V is an 

(m+m’,k+k’)-unavoidable set. 

Vanpoucke points out that “if a set of clues does not intersect every 

unavoidable set, then…there is more than one completion” (Vanpoucke, 2012, p. 

21). Thus, if the potential unavoidable sets can be identified quickly and each of 

these sets can be checked for k clues, the algorithm could identify whether the 

puzzle could be solved uniquely. However, Vanpoucke (2012) notes that a 

program written to find unavoidable sets was not fast enough when attempted 

before, so improvements to this method would first be necessary (p. 22). With 

future research though, this could become a feasible avenue to explore.  

 In a more general sense, the program can likely be improved by making 

changes to enhance efficiency. There may be programming languages that would 

be better suited for this algorithm than C++. It could potentially improve run time 

(although would not eliminate failures) to use a faster computer to run the solver. 

The program currently uses vectors to store previous states of the grid and 

locations that were used in play, which gives the program great flexibility for 

managing the candidate sets, but requires the program to constantly resize these 

variables. There could be a more efficient method of storage, perhaps using a 

structure or class instead, that has not been attempted here. There are likely no 

changes to the methods used, such as how it is checking the grid for 
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contradictions or choosing a minimal candidate set, that will significantly improve 

the run time, but it may be worth some experimentation at a later date.  

In earlier versions, the program started searching for a cell with a minimal 

candidate set in the first cell of the representation of the grid, proceeding 

systematically through the rows and columns. However, this version also failed to 

solve a large number of more complicated puzzles; this is likely because larger 

numbers of clues were concentrated in other areas of the puzzle, meaning that it 

did not choose cells that would quickly determine values in neighbor cells and 

thus required more steps to compute. When the program was revised to choose 

cells from a randomly determined column and row, it was able to solve more 

puzzles, but run time was driven up due to this randomness. The random choice of 

cell is not guided at all, so it can choose cells multiple times or choose cells that 

do not have a minimal candidate set. Particularly towards the end stages of a 

search, where many cells have only one value, the computation time for choosing 

an eligible cell increases significantly. Finding some balance between these two 

methods would likely produce a program that is faster and able to solve more 

puzzles. 

5 – Conclusion 

 This paper presents, to the author’s knowledge, the first application of a 

nested Monte Carlo search algorithm to the Sudoku variation called Samurai 

Sudoku. Although it was not entirely successful, it certainly solves the puzzles 

much faster than a human is able to without the need for multiple iterations of the 

program. These solutions are always correct when the program is able to handle 
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the number of recursive calls necessary to find it. Since there is so little work 

done on Samurai Sudoku, it is difficult to say how successful this algorithm was 

compared to previous work. Further examination of the overlapping areas and 

how they affect the puzzle undoubtedly will lead to an improved search method.  

Section 1.2 shows that there are many possible approaches to solving 

Sudoku grids that each provide certain benefits and pitfalls, depending on the 

desired use for the solver. Most notably, it is clear that algorithms can be 

developed that can solve any Sudoku grid and any variation on Sudoku, although 

there may be some limitations in technology for the more complicated cases. 

There is generally a distinction made between algorithms using some type of 

random search and algorithms using solving strategies to mimic human solving 

techniques, but experimentation in combining these two approaches may be the 

key to overcoming the limitations exhibited by this application. Similarly, looking 

at advances in the mathematics behind Sudoku could lead to improvements in the 

algorithms for solving and generating puzzles. In particular, examining the 

equivalence classes and unavoidable sets shows promise in revealing more about 

Sudoku that will guide future work. Continued exploration of the areas of interest 

of both mathematicians and computer scientists alike will likely reveal much 

more work to be done with Sudoku and its many variations. 
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Appendix 

The following is the content of main.cpp: 

#include "SudokuSolver.h" 

 

using namespace std; 

 

int main() 

{ 

 //Set the size of the grid and if playing 

standard or samurai version 

 int numBands = 9; 

 int numTotalBands = (numBands * 2) + 

sqrt(double(numBands)); 

 

 //Need 3 pieces of information for clues--column, 

row, and value, so create 2D vector 

 std::vector<std::vector<int> > clueSet; 

 for (int iColumn = 0; iColumn < numTotalBands; 

iColumn++) 

 { 

  std::vector<int> newRow(numTotalBands, 0); 

  clueSet.push_back(newRow); 

 } 

 

//dkmgames.com #61743 

 clueSet[0][2] = 3; 

 clueSet[0][3] = 4; 

 clueSet[0][8] = 7; 

 clueSet[0][17] = 3; 

 

 clueSet[1][5] = 8; 

 clueSet[1][6] = 9; 

 clueSet[1][14] = 9; 

 clueSet[1][17] = 8; 

 

 clueSet[2][1] = 5; 

 clueSet[2][3] = 3; 

 clueSet[2][4] = 7; 

 clueSet[2][16] = 5; 

 clueSet[2][18] = 6; 

 

 clueSet[3][0] = 1; 

 clueSet[3][4] = 5; 

 clueSet[3][7] = 8; 
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 clueSet[3][13] = 4; 

 clueSet[3][17] = 5; 

 clueSet[3][20] = 7; 

 

 clueSet[4][4] = 3; 

 clueSet[4][14] = 3; 

 clueSet[4][16] = 4; 

 clueSet[4][19] = 2; 

 

 clueSet[5][0] = 9; 

 clueSet[5][1] = 2; 

 clueSet[5][3] = 6; 

 clueSet[5][15] = 2; 

 clueSet[5][20] = 9; 

 

 clueSet[6][15] = 7; 

 clueSet[6][18] = 9; 

 clueSet[6][19] = 3; 

 

 clueSet[7][3] = 2; 

 clueSet[7][5] = 9; 

 

 clueSet[8][2] = 6; 

 clueSet[8][3] = 7; 

 clueSet[8][4] = 1; 

 clueSet[8][12] = 3; 

 clueSet[8][15] = 6; 

 clueSet[8][18] = 5; 

 

 clueSet[9][8] = 1; 

 

 clueSet[10][11] = 9; 

 

 clueSet[11][9] = 4; 

 clueSet[11][11] = 2; 

 clueSet[11][13] = 5; 

 

 clueSet[12][1] = 5; 

 clueSet[12][9] = 3; 

 clueSet[12][17] = 1; 

 

 clueSet[13][4] = 6; 

 clueSet[13][9] = 8; 

 clueSet[13][13] = 6; 

 clueSet[13][14] = 2; 

 clueSet[13][15] = 4; 

 clueSet[13][19] = 5; 
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 clueSet[14][1] = 3; 

 clueSet[14][3] = 5; 

 clueSet[14][10] = 6; 

 clueSet[14][14] = 5; 

 clueSet[14][17] = 9; 

 clueSet[14][20] = 8; 

 

 clueSet[15][0] = 7; 

 clueSet[15][2] = 2; 

 clueSet[15][5] = 1; 

 clueSet[15][12] = 5; 

 

 clueSet[16][6] = 8; 

 clueSet[16][7] = 1; 

 clueSet[16][13] = 2; 

 clueSet[16][19] = 4; 

 

 clueSet[17][0] = 9; 

 clueSet[17][5] = 7; 

 clueSet[17][6] = 4; 

 clueSet[17][14] = 4; 

 clueSet[17][18] = 3; 

 clueSet[17][19] = 8; 

 clueSet[17][20] = 6; 

 

 clueSet[18][1] = 7; 

 clueSet[18][3] = 6; 

 clueSet[18][4] = 3; 

 clueSet[18][8] = 4; 

 clueSet[18][15] = 7; 

 clueSet[18][17] = 3; 

 

 clueSet[19][0] = 4; 

 clueSet[19][1] = 9; 

 clueSet[19][13] = 1; 

 clueSet[19][16] = 9; 

 clueSet[19][18] = 6; 

 

 clueSet[20][2] = 3; 

 clueSet[20][8] = 2; 

 clueSet[20][16] = 8; 

 clueSet[20][18] = 5; 

 clueSet[20][19] = 3; 

 

 //Now create our grid object to be modified in 

our function 
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 //Use a 3D array since cells can hold multiple 

possible values as we search 

 std::vector<std::vector<std::vector<int> > > 

m_sudokuGrid; 

 

 //Now that the grid is ready, start the timer & 

then start the algorithm 

 std::clock_t startTime = std::clock(); 

 m_sudokuGrid = CreateGrid(numBands, 

numTotalBands, clueSet); 

 

 std::clock_t endTime = std::clock(); 

 

 //Puzzle is now solved, so calculate the run time 

 double runTime = (endTime - startTime) / (double) 

CLOCKS_PER_SEC; 

 

 //Print the solution and run time 

 for (int iColumn = 0; iColumn < numTotalBands; 

iColumn++) 

 { 

  ofstream outputFile; 

  outputFile.open("solvedpuzzle.txt"); 

 

  outputFile << runTime << " seconds" << endl 

<< endl; 

 

  for (int iRow = 0; iRow < numTotalBands; 

iRow++) 

  { 

   for (int iColumn = 0; iColumn < 

numTotalBands; iColumn++) 

   { 

    if (m_sudokuGrid[iRow][iColumn][0] 

== 0) 

    { 

     outputFile << "   "; 

    } 

    else 

    { 

     outputFile << 

m_sudokuGrid[iRow][iColumn][0] << "  "; 

    } 

   } 

   outputFile << endl; 

  } 
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  outputFile.close(); 

 } 

 return 0; 

} 

 
 The following is the content of the header file: 

#if !defined(SUDOKUSOLVER_H) 

#define SUDOKUSOLVER_H (1) 

 

#include <ctime> 

#include <time.h> 

#include <math.h> 

#include <cstdio> 

#include <string> 

#include <vector> 

#include <stdio.h> 

#include <fstream> 

#include <sstream> 

#include <iomanip> 

#include <iostream> 

#include <algorithm> 

#include <sys/utime.h> 

 

//Functions 

bool ClueEliminationCheck(int numBands, int 

numTotalBands); 

void PerformSearch(int numBands, int numTotalBands, 

int currentStep); 

std::vector<std::vector<std::vector<int> > > 

CreateGrid(int numBands, int numTotalBands, 

std::vector<std::vector<int> > clueSet); 

 

#endif 

 
 The following is the content of SudokuSolver.cpp: 

#include "SudokuSolver.h" 

 

//Create the Sudoku grids we'll use during the search 

as well as vectors to store the info at each layer of 

the search 

//Use a temp grid as well so we can undo changes when 

a contradiction is reached 

std::vector <int> valuesSet; 

std::vector<std::vector <int> > cellsSet; 
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std::vector<std::vector<std::vector<int> > > 

sudokuGrid; 

std::vector<std::vector<std::vector<std::vector<int> > 

> > sudokuGridTemp; 

 

std::vector<std::vector<std::vector<int> > > 

CreateGrid(int numBands, int numTotalBands, 

std::vector<std::vector<int> > clueSet) 

{ 

 for (int iColumn = 0; iColumn < numTotalBands; 

iColumn++) 

 { 

  //Create a 2D vector to hold each cell in a 

row, which holds multiple values 

  std::vector<std::vector<int> > newRow; 

  for (int iRow = 0; iRow < numTotalBands; 

iRow++) 

  { 

   //Each cell is its own vector to hold 

the potential values in non-clue cells 

   std::vector<int> newCell; 

 

   //Areas on screen that aren't part of a 

grid (since we use a square for simplicity) are set to 

0 

   //This will make the search skip over 

them since there is only 1 value & it is not 1-9 

   int bound1 = numBands - 1; 

   int bound2 = numBands + 

sqrt(double(numBands)); 

   int bound3 = numBands - 

sqrt(double(numBands)); 

   int bound4 = (numTotalBands - 1) - (2 * 

sqrt(double(numBands))); 

   if ( ((iRow > bound1) && (iRow < 

bound2)) && ((iColumn < bound3) || (iColumn > bound4)) 

) 

   { 

    newCell.push_back(0); 

   } 

   else if ( ((iColumn > bound1) && 

(iColumn < bound2)) && ((iRow < bound3) || (iRow > 

bound4)) ) 

   { 

    newCell.push_back(0); 

   } 

   else 
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   { 

    //If clueSet has a 0, there was no 

clue, so fill in all possible values 

    if (clueSet[iColumn][iRow] == 0) 

    { 

     for (int iClue = 0; iClue < 

numBands; iClue++) 

     { 

      newCell.push_back(iClue 

+ 1); 

     } 

    } 

    //Otherwise it gets 1 value--the 

clue value 

    else 

    { 

    

 newCell.push_back(clueSet[iColumn][iRow]); 

    } 

   } 

   //Add our newly created cell to the row 

   newRow.push_back(newCell); 

  } 

  //Add our newly created row to the grids 

  sudokuGrid.push_back(newRow); 

 } 

 

 //To make the search more efficient, we remove 

possibilities ruled out by the clues 

 bool setUpError = ClueEliminationCheck(numBands, 

numTotalBands); 

 if (setUpError == true) 

 { 

  std::cout << "Contradiction found in initial 

set up. Please check clues give in main.cpp."; 

  system("pause"); 

 } 

 

 //If no errors, continue with the search 

 int stepCount = 0; 

 PerformSearch(numBands, numTotalBands, 

stepCount); 

 

 return sudokuGrid; 

} 
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bool ClueEliminationCheck(int numBands, int 

numTotalBands) 

{ 

 //Grid 0 is top left grid; grid 1 is top right 

grid; grid 2 is center grid 

 //Grid 3 is bottom left grid; grid 4 is bottom 

right grid 

 bool contradiction = false; 

 int valueCount[9] = {0,0,0,0,0,0,0,0,0}; 

 int rowStartingValues[5] = {0,0,6,12,12}; 

 int columnStartingValues[5] = {0,12,6,0,12}; 

 

 //Need to check each grid individually to make 

sure clues are only eliminated within the correct grid 

 for (int iGrid = 0; iGrid < 5; iGrid++) 

 { 

  for (int iColumn = 

columnStartingValues[iGrid]; iColumn < 

(columnStartingValues[iGrid] + numBands); iColumn++) 

  { 

   for (int iRow = 

rowStartingValues[iGrid]; iRow < 

(rowStartingValues[iGrid] + numBands); iRow++) 

   { 

    //If cell only contains a given 

clue, remove that value from all other cells in the 

row, column, & block 

    if ( 

(sudokuGrid[iRow][iColumn].size() == 1) && 

(sudokuGrid[iRow][iColumn][0] != 0) ) 

    { 

     int value = 

sudokuGrid[iRow][iColumn][0]; 

 

     //Move along the row removing 

the value from each cell 

     for (int jColumn = 

columnStartingValues[iGrid]; jColumn < 

(columnStartingValues[iGrid] + numBands); jColumn++) 

     { 

      if ( (iColumn != 

jColumn) && (sudokuGrid[iRow][jColumn].size() > 1) && 

(std::binary_search(sudokuGrid[iRow][jColumn].begin(), 

sudokuGrid[iRow][jColumn].end(), value) == true) ) 

      { 

      

 sudokuGrid[iRow][jColumn].erase(std::remove(sudok
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uGrid[iRow][jColumn].begin(), 

sudokuGrid[iRow][jColumn].end(), value)); 

 

       if 

(sudokuGrid[iRow][jColumn].size() == 0) 

       { 

        contradiction 

= true; 

        break; 

       } 

      } 

      else if 

(sudokuGrid[iRow][jColumn].size() == 1) 

      { 

       int valueCheck = 

sudokuGrid[iRow][jColumn][0]; 

      

 valueCount[valueCheck - 1]++; 

      } 

     } 

 

     //Check for repeated values 

     for (int iValue = 0; iValue < 

numBands; iValue++) 

     { 

      if (valueCount[iValue] > 

1) 

      { 

       contradiction = 

true; 

      } 

      valueCount[iValue] = 0; 

     } 

 

     //Exit if reached a 

contradiction 

     if (contradiction == true) 

     { 

      break; 

     } 

 

     //Move along the column 

removing the value from each cell 

     for (int jRow = 

rowStartingValues[iGrid]; jRow < 

(rowStartingValues[iGrid] + numBands); jRow++) 

     { 
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      if ( (iRow != jRow) && 

(sudokuGrid[jRow][iColumn].size() > 1) && 

(std::binary_search(sudokuGrid[jRow][iColumn].begin(), 

sudokuGrid[jRow][iColumn].end(), value) == true) ) 

      { 

      

 sudokuGrid[jRow][iColumn].erase(std::remove(sudok

uGrid[jRow][iColumn].begin(), 

sudokuGrid[jRow][iColumn].end(), value)); 

 

       if 

(sudokuGrid[jRow][iColumn].size() == 0) 

       { 

        contradiction 

= true; 

        break; 

       } 

      } 

      else if 

(sudokuGrid[jRow][iColumn].size() == 1) 

      { 

       int valueCheck = 

sudokuGrid[jRow][iColumn][0]; 

      

 valueCount[valueCheck - 1]++; 

      } 

     } 

 

     //Check for repeated values 

     for (int iValue = 0; iValue < 

numBands; iValue++) 

     { 

      if (valueCount[iValue] > 

1) 

      { 

       contradiction = 

true; 

      } 

      valueCount[iValue] = 0; 

     } 

 

     //Exit if reached a 

contradiction 

     if (contradiction == true) 

     { 

      break; 

     } 
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     //Move through block removing 

the value from each cell 

     int rowMod = iRow % 

int(sqrt(double(numBands))); 

     int columnMod = iColumn % 

int(sqrt(double(numBands))); 

 

     for (int kRow = (iRow - 

rowMod); kRow < (iRow + (3 - rowMod)); kRow++) 

     { 

      for (int kColumn = 

(iColumn - columnMod); kColumn < (iColumn + (3 - 

columnMod)); kColumn++) 

      { 

       if ( 

(sudokuGrid[kRow][kColumn].size() > 1) && 

(std::binary_search(sudokuGrid[kRow][kColumn].begin(), 

sudokuGrid[kRow][kColumn].end(), value) == true) ) 

       { 

       

 sudokuGrid[kRow][kColumn].erase(std::remove(sudok

uGrid[kRow][kColumn].begin(), 

sudokuGrid[kRow][kColumn].end(), value)); 

 

        if 

(sudokuGrid[kRow][kColumn].size() == 0) 

        { 

        

 contradiction = true; 

         break; 

        } 

       } 

       else if 

(sudokuGrid[kRow][kColumn].size() == 1) 

       { 

        int valueCheck 

= sudokuGrid[kRow][kColumn][0]; 

       

 valueCount[valueCheck - 1]++; 

       } 

      } 

     } 

 

     //Check for repeated values 

     for (int iValue = 0; iValue < 

numBands; iValue++) 
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     { 

      if (valueCount[iValue] > 

1) 

      { 

       contradiction = 

true; 

      } 

      valueCount[iValue] = 0; 

     } 

 

     //Exit if reached a 

contradiction 

     if (contradiction == true) 

     { 

      break; 

     } 

    } 

   } 

 

   //Exit this loop too if reached a 

contradiction 

   if (contradiction == true) 

   { 

    break; 

   } 

  } 

 

  //Exit this loop too if reached a 

contradiction 

  if (contradiction == true) 

  { 

   break; 

  } 

 } 

 

 return contradiction; 

} 

 

void PerformSearch(int numBands, int numTotalBands, 

int currentStep) 

{ 

 int minimum = 10; 

 

 //Start minimum at 10, so if no cell has more 

than 1 value, it stays at 10 which is clearly not a 

possible state for a cell 
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 //Find cell with lowest number of clues to keep 

the algorithm fast 

 for (int iColumn = 0; iColumn < numTotalBands; 

iColumn++) 

 { 

  for (int iRow = 0; iRow < numTotalBands; 

iRow++) 

  { 

   if ( (sudokuGrid[iRow][iColumn].size() 

< minimum) && (sudokuGrid[iRow][iColumn].size() > 1) ) 

   { 

    minimum = 

sudokuGrid[iRow][iColumn].size(); 

   } 

  } 

 } 

 

 if (minimum < 10) 

 { 

  int iRowRand = rand(); 

  int iRow = iRowRand % numTotalBands; 

 

  int iColumnRand = rand(); 

  int iColumn = iColumnRand % numTotalBands; 

 

  while (sudokuGrid[iRow][iColumn].size() != 

minimum) 

  { 

   iRowRand = rand(); 

   iRow = iRowRand % numTotalBands; 

 

   iColumnRand = rand(); 

   iColumn = iColumnRand % numTotalBands; 

  } 

 

  if (sudokuGrid[iRow][iColumn].size() == 

minimum) 

  { 

   //Save the current grid & location 

being set 

   sudokuGridTemp.push_back(sudokuGrid); 

   std::vector <int> location; 

   location.push_back(iRow); 

   location.push_back(iColumn); 

   cellsSet.push_back(location); 
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   //While cell has multiple 

possibilities, randomly select one value to fill in 

   int random = rand(); 

   int randomChoice = random % 

sudokuGrid[iRow][iColumn].size(); 

   int value = 

sudokuGrid[iRow][iColumn][randomChoice]; 

   valuesSet.push_back(value); 

 

   //Change the cell to the randomly 

selected value & check for contradictions 

   sudokuGrid[iRow][iColumn].assign(1, 

value); 

   bool restoreGrid = 

ClueEliminationCheck(numBands, numTotalBands); 

 

   //If a contradiction was found, restore 

the grid & erase the value that caused it 

   if (restoreGrid == true) 

   { 

    sudokuGrid = 

sudokuGridTemp[currentStep]; 

   

 sudokuGrid[iRow][iColumn].erase(std::remove(sudok

uGrid[iRow][iColumn].begin(), 

sudokuGrid[iRow][iColumn].end(), value)); 

    sudokuGridTemp[currentStep] = 

sudokuGrid; 

 

    //If one possible value left, need 

to check for contradiction 

    if 

(sudokuGrid[iRow][iColumn].size() == 1) 

    { 

     valuesSet[currentStep] = 

sudokuGrid[iRow][iColumn][0]; 

     restoreGrid = 

ClueEliminationCheck(numBands, numTotalBands); 

    } 

   } 

 

   //If we did find a contradiction in the 

last possible value, we need to step back 1 layer & 

try again 

   while ( (restoreGrid == true) && 

(sudokuGrid[iRow][iColumn].size() < 2) ) 

   { 
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    currentStep--; 

    restoreGrid = false; 

 

    iRow = cellsSet[currentStep][0]; 

    iColumn = 

cellsSet[currentStep][1]; 

       

    //Restore grid to previous step's 

state, erase the problematic value, & re-save the grid 

    sudokuGrid = 

sudokuGridTemp[currentStep]; 

   

 sudokuGrid[iRow][iColumn].erase(std::remove(sudok

uGrid[iRow][iColumn].begin(), 

sudokuGrid[iRow][iColumn].end(), 

valuesSet[currentStep])); 

    sudokuGridTemp[currentStep] = 

sudokuGrid; 

 

    //Erase the saved info for the 

step that led to a contradiction 

    cellsSet.pop_back(); 

    valuesSet.pop_back(); 

    sudokuGridTemp.pop_back(); 

 

    //If one possible value left, need 

to check for contradiction 

    if 

(sudokuGrid[iRow][iColumn].size() == 1) 

    { 

     valuesSet[currentStep] = 

sudokuGrid[iRow][iColumn][0]; 

     restoreGrid = 

ClueEliminationCheck(numBands, numTotalBands); 

    } 

    //If all values lead to 

contradiction, need to step back another layer 

    else if 

(sudokuGrid[iRow][iColumn].size() == 0) 

    { 

     restoreGrid = true; 

    } 

   } 

 

   //If no contradictions, start another 

layer of search 

   if (restoreGrid == false) 
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   { 

    currentStep++; 

    PerformSearch(numBands, 

numTotalBands, currentStep); 

   } 

  } 

 } 

 

 return; 

} 
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