9-1-1970

A Guide for Physical Development

Johnson, Johnson, & Roy, Inc. Landscape Architects

Follow this and additional works at: https://opus.govst.edu/anniv

Part of the Higher Education Commons, and the Landscape Architecture Commons

Recommended Citation


https://opus.govst.edu/anniv/77

This Book is brought to you for free and open access by the University Archives at OPUS Open Portal to University Scholarship. It has been accepted for inclusion in University Anniversaries & Historical Documents by an authorized administrator of OPUS Open Portal to University Scholarship. For more information, please contact opus@govst.edu.
Governors State University, founded in 1969, is intended to be a unique, innovative, experimenting upper-division and graduate institution primarily serving low and middle income junior college graduates.

Its defined goals are:

- job efficiency
- functional citizenship
- intra and interpersonal relationships
- cultural expansion

Its guiding concepts are:

- Humaneness
- Openness
- Responsiveness
- Efficiency
- Service
- Flexibility
Over the past year the campus for the new Governors State University in Park Forest South has been under study. It has been investigated not just from the standpoint of how the physical characteristics of the site will eventually accommodate structures; but by the many factors that will ultimately contribute to the overall success of the institution. As part of the planning process for this campus, a series of interim reports was prepared as an indication of progress and to allow those involved in the planning to better understand the influences that have prompted the conclusions of this study.

The purpose of this document is to summarize the material presented in the interim reports and to re-emphasize those portions which have emerged as significantly contributory to the planning process. Much of what is contained herein is extracted from previously submitted material. It has been arranged in such a way as to offer continuity to the random approach of data gathering which because of circumstances is typical in early stages of a new campus.

In general, the contents of this report began with the site as an area of land which offers many opportunities for development. The analysis of the site and its surrounding area reveals many factors that enhance these opportunities. The analysis reveals as well the problems of the land, and the relationship of the site to its edges. The sorting out of the site elements has allowed an investigation of objectives which would aid in bridging the gap between "existing characteristics of the land" and "options for development". Finally, the patterns of development are studied and a campus plan emerges.

The plan in itself does not offer a precise solution nor does it attempt to define the potential growth patterns for an experimenting institution. It should, however, serve as a guide for future development of the campus and as a basis of judgment on which future decisions can be made.

FOREWORD
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A NEW CAMPUS – the planning process</td>
</tr>
<tr>
<td>5</td>
<td>ANALYSIS – the region, the site</td>
</tr>
<tr>
<td>13</td>
<td>CAPACITY</td>
</tr>
<tr>
<td>14</td>
<td>ENROLLMENT</td>
</tr>
<tr>
<td>15</td>
<td>QUANTITATIVE NEEDS</td>
</tr>
<tr>
<td>19</td>
<td>ENVIRONMENTAL STRUCTURE</td>
</tr>
<tr>
<td>21</td>
<td>POTENTIAL LAND USE</td>
</tr>
<tr>
<td>27</td>
<td>ACADEMIC STRUCTURE</td>
</tr>
<tr>
<td>37</td>
<td>CAMPUS DEVELOPMENT</td>
</tr>
<tr>
<td>42</td>
<td>PHASE ONE DEVELOPMENT</td>
</tr>
<tr>
<td>45</td>
<td>THE CAMPUS PLAN</td>
</tr>
</tbody>
</table>

**CONTENTS**
The design of a new campus is a combination of many influences. It is, on the surface, an arrangement of forms that must serve the demands of the user in terms of space and function. In its classical sense, the campus suggests the aggregate of elements that create the learning environment. Unfortunately, the physical evolution of most college campuses has occurred at the expense of both educational and environmental growth.

The challenge inherent in creating an educational complex that is "physically" and "mentally" adaptive to growth and change is no doubt exciting to both the physical and the educational planner. Obviously the key is in the planning ... planning which recognizes the impact of all related elements and interprets their goals and desires into a fabric of learning, beauty and efficiency.

As with any development, it will of course be necessary for each contributive element to be identified and its role clarified. The success of the development begins when the elements are dovetailed in the early stages of study.

It is important that many broad categories be investigated as a parallel planning process. Much of the following is known or presently under study and becomes increasingly significant as the Educational Model begins to take on form.

- Educational Specifications
- Site Characteristics
- The community and its effect on the campus edge
- Area of student source and service
- Architecture

These are, of course, categories which in themselves require detailed study. In combination, they will establish the foundation for an "Environmental Structure" or "character" of the campus.

A NEW CAMPUS - the planning process
1

Analysis

the region

the site
The region in which the site is located serves primarily as a residential fringe of the Chicago Metropolitan area. It is typified by scattered low density communities which have developed as a result of transportation route extensions linking the commercial and industrial centers of Northeastern Illinois. The communities have experienced rapid growth in recent years as a result of transportation advances and now it is this growth that is demanding additional progress in transportation merely to keep pace. It is this phenomenon that has created many of the advantages of the campus site as well as its problems.

- Regional growth has created a need for the University and will contribute significantly to its enrollment.
- Vehicular access to the campus is good and will help to increase the area of student source.
- The Illinois Central Railroad offers potential for a commuter linkage from the Chicago Loop area.
- New expressway corridors are necessary and could have an effect on the future planning of the campus depending upon their proximity to the site.
- A major regional airport has been suggested near the campus site. This could have adverse affects upon the campus in terms of noise and traffic depending upon its relationship to the campus.

In general it is felt that the communities in the area will continue to grow in increasing densities. This will provide an increasing source of students for the University. The facilities in the area adjacent to the site will increase and be upgraded to satisfy the need generated by the University. A housing demand by the students and staff of GSU will have to be met by the adjacent communities and Park Forest South will be required to play an important role in the provision of services. The transportation center planned north of the site will become increasingly important as this Chicago fringe area expands toward an undefinable capacity.

THE REGION
The Governors State University site of approximately 750 acres exists in a spot that is influenced by a number of physiological and morphological characteristics. The site is subject to extremes of climate ranging from hot summers to bitterly cold winters. The winds are generally strong from the west to northwest and the precipitation prompts frequent spring and summer rains with heavy snowfalls during the winter months.

The surface of the site is varied from level to eroded in a valley area that dominates the southeastern corner. The site can be divided into three distinct types of topography. The valley area, the rolling land with a strong ridge line to the north and a level poorly drained section in the southwest. These distinct land forms have resulted from glacial action which created the physiographic divisions and deposited the soils which range from good buildable land to poor and compressible. The three divisions are a) Morainal upland which contains the best soil but is dotted with kettles of weak and compressible soil. b) Dissected lake plain which contains the poorest soils on the site primarily because of the inconsistency of their composition. c) Lake plain which has dried up but is subject to water retention. This is the most level area of the site and has reasonably good soil despite a settled layer of silt deposited by the lake. The site lies within the Thorn Creek watershed. Its general drainage pattern is to the east and is collected in the creek which flows through the dissected Lake plain. Thorn Creek begins as an identifiable drainage channel just south of the GSU site and collects to Lake Michigan in the north.

THE SITE
The vegetation of the site is influenced by two factors, one being natural the other attributable to man. Inasmuch as Thorn Creek runs through the site, the natural tree cover exists partly due to its association to the irrigated channel and also to the fact that this area adjacent to the Creek is rugged and therefore not suitable for agriculture. The trees have survived the clearing axe. Agriculture accounts for the other significant vegetative form on the site namely hedge rows. These rows define property boundaries and establish breaks against the prevailing winds.

Utilities on the site are minimal with three oil transmission lines being the major sub-surface lines that interrupt the site. The transmission lines are located within rights-of-way and do constitute a conflict in part on the buildable areas of the site. The opportunities for revision or relocation of the lines should be thoroughly searched out since construction in their path may be necessary in the future.
The impression of the site from various points along the perimeter is an important evaluation as is the impression of the exterior from within the site. These evaluations will be helpful in selecting zones of primary development and in drawing some conclusions on the potentials for other areas of development.
2

Capacity
Enrollment
Quantitative Needs
The ability of the site to accommodate development is guided by the density which allows an academic unit to function efficiently. This in turn is dictated by the form of the campus which emerges as appropriate, e.g. low rise vs high rise and urban vs suburban. It is sufficient to say at this point that the capacity is unlimited and will be adjusted down as decisions are made concerning:

- community relationship
- soil and slope characteristics
- open space and parking demands
- architectural character

The site is approximately 750 acres in size and offers many options for development in the initial phases of construction. The options will be described later in more detail. The present concern here is for the character which will unite the campus and its relation to the land available. We must avoid the trap of abundance on this site, both as an advantage and as a disadvantage. In the face of future unknowns, the wisdom of land reserves provides expansibility for indefinite enrollment. The design problems of humanizing the exterior spaces is compounded when dealing with large land reserves.

As goals are identified both for the academic and physical development of the University, it becomes necessary to test the capacity of the site and its ability to accommodate proposed facilities. It is obvious that the dimensions of land available for development offer abundant reserve beyond the anticipated first and second phase enrollment of 6000 FTE students. It is also apparent that the initial phases will bear the burden of rationale in establishing the foundation for subsequent construction on the campus.

CAPACITY
Governors State University, an experimenting upper-division and graduate University, is based on a new concept in higher education - the open University. The permanent campus will initially be planned in two phases of 2000 and 4000 FTE students respectively and an ultimate indefinite enrollment.

The potential student count on the campus is impossible to fix based on an indefinite commitment on enrollment. The gauge for numbers of students then becomes one of capacity. Present projections indicate that the enrollment will climb to fill the space available as construction of various phases is completed. The maximum project is for 6,000 students at the completion of Phase II sometime during the academic year 1976-1977. This will include students at the Junior, Senior, Professional and Graduate I levels.

The ability for the University to grow is then strongly dependent on the flexibility of the campus structure to expand efficiently and provide the necessary enclosed area to satisfy the demands of increasing enrollment.

This basic need of square footage for students must be planned for and provided with two goals in mind a) the standards of area per student should not be sacrificed to accommodate greater numbers and b) the quality of architectural space and environment must be maintained as subsequent phases are implemented.

ENROLLMENT

<table>
<thead>
<tr>
<th>Year</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>500</td>
</tr>
<tr>
<td>1972</td>
<td>760</td>
</tr>
<tr>
<td>1973</td>
<td>2000</td>
</tr>
<tr>
<td>1974</td>
<td>2000</td>
</tr>
<tr>
<td>1975</td>
<td>4000*</td>
</tr>
<tr>
<td>1976</td>
<td>6000</td>
</tr>
</tbody>
</table>

*Assuming at least a portion of Phase II constructed by 1975-76 academic year.
The development of the campus must be a reflection of the factors which consume space. The campus is foremost an academic complex, therefore, the gauge will be in terms of area per student. Two assumptions have been made in determining some quantitative data for sizing the campus.

- Although the program indicates a range of 10 to 13 thousand FTE students as maximum, we have chosen the figure of 15,000 primarily to allow an expansion cushion in view of future unknowns.

- As program sophistication increases, so will the need for academic space in terms of square feet per student. We are assuming this to be 125 net square feet figured as 66% of gross area.

The academic campus for purposes of capacity study will include the area of the ten minute walking radius (a 2,400' circle of approximately 100 acres).

- Net Area:
  15,000 students x 125 N.S.F. = 1,875,000 net square feet

- Gross Area:
  15,000 students = 2,812,500 gross square feet

The gross square foot figure is equivalent to 64 acres of land on a 1:1 ground area coverage (G.A.C.). Projecting the ground area coverage to multi-level structures it would require 32 acres for a 2 level average and 21 acres for a 3 level average. These figures are intended only to give a sense of scale and will be referred to as we investigate the options. It is obvious that other factors will have an influence on the actual requirements for academic space. Duplication of certain facilities, as well as shift scheduling, could have a significant effect upon the space needs.

**QUANTITATIVE NEEDS**
Parking. Since this will be a commuter institution we are faced with accommodating a major user of space, the automobile. So as an assumption and by the experience of similar institutions, we have selected a ratio of one space for every two students. This ratio, as in the case of academic area, is subject to revision based on shift scheduling or other factors of space economy.

- 15,000 students, 2:1 parking = 7,500 spaces
- 130 spaces per acre = 58 acres of land exclusive of circulation

It should be pointed out that the 100 acre academic campus is not responsible to handle all parking within its walking diameter. Therefore, the bulk of the 58 acres is located as a perimeter support use within the non-academic campus.

The third major user of land is "programmed recreational space" which for the purpose of this phase of study has not been quantitatively described. The reason being that ample area exists on the site which is presently classified as "poor soil area" pending further investigation.
3 Environmental Structure
Potential Land Use
The harmonious relationship of the campus to its surroundings at all stages of development is a goal which is obviously difficult to achieve. The complexities of physical evolution exert transitional demands on an institution as major phasing is implemented. It is at these times that the plan becomes vulnerable to change; change which may seriously alter the intent of the overall plan. We can assure that growth of an institution will bring with it new programs as well as new philosophies in educations. These forms of change must not be inhibited within the institution. They should, in fact, be encouraged to occur within the established framework of the physical campus. It is this framework which becomes important as we search out the options for land use on the Governors State University site.

The influences of land character within the site and the elements of the surrounding area all contribute in some way to the potential development of the campus. These factors, when analysed for their relative impact upon any form of development on the site, begin to suggest patterns for the physical structuring of the campus. The options for development then relate specifically to a singular set of goals which has been derived from the analysis of all site and community influences. The goals in combination provide the "Environmental Structure" for the development of the campus.

The value of establishing an Environmental Structure for the site at an early stage of study becomes apparent as various options are investigated. The diagram, while reflecting specific desires for:

- campus approaches and entrances
- relation to contiguous land uses
- continuation of established open spaces
- building relations to land form
- ground water patterns
- landscape buffers and screens
- potential site zoning;

**ENVIRONMENTAL STRUCTURE**
it also serves a preliminary means of considering:

- site circulation
- zoning possibilities for non-owned land
- maintenance of ecologically balanced landscape
- sub-surface water recharge cycles
- recognition of existing natural environment
- overall campus character

Any option for development that is prepared according to the goals should reflect the intent of the "Environmental Structure". This can only assure that as the campus becomes subjected to change it can express itself within a framework created by the internal and external influences of the site itself.
It has been established through analysis of the internal and external influences on the site, that varying combinations of factors dictate specific uses for zones within its boundaries. These uses in turn must relate to adjacent uses on the site to assure that the resulting plan succeeds within the context of its goals and objectives.

The land is abundant in size and contrasts within its boundaries in topography, vegetation and soils. The perimeter is exposed as well to contrasts of contiguous land uses ... from a manufacturing facility to the passive atmosphere of the Thorn Creek Valley. Influences within the region will ultimately determine some patterns of land use within the campus. Many of these must be speculated upon; others although non-existent physically, are in planning stages and become part of the influences which we are dealing with.

Land use, as shown here, becomes a foundation for specific arrangements within the site. The details are, of course, dependent upon other inputs such as the quantitative program of Governors State University as a teaching facility and the interpretation of this data into architectural spaces. The general categories of land use will be defined in this section and will serve as a basis for determining land areas to aid in the location of specific construction.

LAND USE
ACADEMIC CAMPUS. The area of land containing all academic functions including Libraries, Auditoriums, Student Services, etc. This land generally falls within or adjacent to the module of the ten minute walking diameter. Its capacity is determined by the preferred density/character relationship of average building height and ground area coverage. It is assumed that parking within this zone is present but minimal.

CORE FACILITIES. Part of the academic campus but significant as a land use because of the influence of this use on academic expansion, access and circulation.

ADMINISTRATION. Another portion of the academic campus. May be core facility or fringe depending upon the desired program relationship.

PARKING. A major user of land that competes for position on the campus with other uses. On this campus it will be necessary to provide for a) commuter demand in large conveniently located lots and b) faculty, staff and visitor parking in smaller conveniently located lots. The recommended ratio for parking is one space for every two students.

OPEN SPACE. This is a general classification which includes all active and passive outdoor spaces. The breakdown of this space is based primarily on its major use but overlapping of activities occur as required by campus programs or character.

- Buffers and Screens. Generally an area that has been set aside to control views either from the site or within it, such as the softening of adjacent land uses or as a device for changing scale within the site.

- Environmental Open Space. That area of land within the site which is held as a non-buildable unit because of its importance in maintaining an ecological balance to areas outside the site. This can apply to hydrological, vegetative or aesthetic objectives.

CATEGORIES
- **Internal Fabric.** The inter-building spaces of lawns, plazas and walkways which serve to tie the internal elements of the campus to the site edges thereby maintaining an order of open land relationships into the community.

- **Recreation/Athletics.** Areas of land set aside for programmed activities of physical education, intra-mural sports and spontaneous group activities.

**COMMUNITY RELATED.** Land units within the site which because of character, location or facility are best suited for community use. This does not exclude the existence of community facilities within the academic campus but rather offers a potential for specialized functions of a community nature to occur within the influence of the campus, but in contrast to the character of the core area. This tends to encourage campus/community interactions.

**CIRCULATION.** The linkages within the site which provide access to structures, parking, drop-off zones and service areas. This includes land devoted to campus entrances for convenience and image. Pedestrian circulation, as a land use, is less easily defined but generally conforms to the open spaces in all categories.

**SPECIAL USE.** A unit of land having unique characteristics that could accommodate a variety of uses. The location of this unit should offer good relationship to other facilities thereby allowing it to be convenient and efficient as well as utilizing the uniqueness of a specific area of the site.
4 Academic Structure
The character of the campus will eventually be based upon the environmental structure that is established by the Academic Campus. The diagrams suggest three basic approaches to organization of the academic core or cores.

A - Distributed density - no core  
B - Concentrated core  
C - Multi-nucleal core

This approach is based on the assumption that academic density can be maintained on an even level throughout the campus and that a common element of organization can allow equal relative emphasis upon all disciplines. Success of this concept is dependent upon a strong resolution of the integrating element and an academic attitude that supports overlapping of facilities. This planning approach could be implemented by establishing a moderate overall campus density, determining a floor area ratio of minor variation, and developing a circulation system that recognizes a maintained level of emphasis and distribution for academics. The merit of this approach lies in its potential efficiency; however, the inadequacies of the system as it relates to this campus become evident when measured against the increasing complexities of academic needs and the ineffectiveness that would result as further expansion occurs.

**ACADEMIC STRUCTURE**
This approach relies entirely on the organization of campus facilities around a dominant core area. This system, or variations of it, is typical of many smaller campuses which presently exist throughout the country. They have developed in this manner as a result of program requirements and the minimized duplication of facilities. In the case of a planned campus, either as an investigation of an existing institution or the design of a new facility, this concept would depend on the following assumptions:

Academic density would be maintained at a higher relative figure as it approaches a centrally developed area forming a nucleus of administrative and student services, library, etc. Density decrease would then be a function of dimension from the core area. The location of facilities would be determined by a combination of relative density and a degree of dependence to the central core.

As in the previous example, this scheme is limiting in terms of its horizontal expansion potential. Based on a five-minute walking radius of 1,200 feet, the maximum effective dimension of the academic campus would be 2,400 feet. Expansion would then be handled in a vertical manner.

This is more particularly suited to campuses where growth is governed by attitudes related primarily to existing land reserves. Substantial horizontal growth could occur on presently owned land, thereby increasing walking distances beyond the five-minute radius.

This pattern is an approach which recognizes the inevitable increase in dimension as horizontal expansion coincides with enrollment growth. This is accomplished by reconsidering the singular physical/academic center as possibly being supplemented or replaced by multiples of the center. These zones of influence would be of a smaller, more intimate nature. However, they would retain the focal characteristics of a major core. It is essential that these centers relate physically to one another in order to maintain the singular image of the campus. This concept, although it appears to be economically limiting as duplication of facilities increases, offers an exciting approach to a solution of the physical growth problems of a campus that depends upon utilizing widely spaced facilities.
LOCATION OF THE CORE

Proper location of core promotes functional efficiency on the campus.

Efficiency is impaired as growth moves away from the core.

Corrective moves are difficult as growth occurs, major core commitment requires inefficient solution.

CONCENTRIC EXPANSION

Development occurs evenly around core .... difficult to bridge roadway barrier.

CORE SHIFT

Growth then realigns to new center.

INITIAL LOCATION

Core is located on the basis of developable land units allowing growth to meet the limits of efficiency.
EXPANSION OF THE CORE

SATELLITE
Distance is dependent upon ability to reproduce facilities in sub-cores.

LINEAR
Expansion dependent upon multiplicity of core functions.

CONCENTRIC
Growth controlled by ability to reach all facilities.

CORE EFFICIENCY/CIRCULATION
The 2400' diameter circle is a gauge for measuring capacity of the academic core. This circle allows 10 minutes walk on its diameter. As growth exceeds this dimension, the need for change exists.

OPTIONS
The growth can go up ↑ by increasing density; thereby intensifying the core but again, taxing the zone of support facilities

or ....

by relating the core to a transportation system that allows people to be brought into the core without overdeveloping the fringes.
CONCENTRIC CORE. A concept which is dependent upon a strong central focus and assumes that development expands in a concentric pattern within a pedestrian circulation dimension. Service and support facilities develop on the perimeter as a concentric expression but not as a prime academic land use.

SUB-CORE. Development of a major primary core (e.g. student center/library as central) of lesser scale than in concept "A" but autonomous and pedestrian-oriented. Specialized extensions of this core occur on the site for convenience of major facilities but remain primarily self contained. Relationship between sub-cores is not pedestrian scale.

LINEAR. Similar in development to "A" but utilizing an elongated core which occurs as a series of centers that relate to a more specialized form of segmented perimeter.

MEGA STRUCTURE. This concept is fully dependent upon the interconnection of enclosed spaces resulting in a positive expression of interior/exterior space.

OPTIONS
EDGE BUFFERS AND OPEN SPACE PENETRATE PARKING AND SERVICE ZONES TO PROVIDE CONTINUITY FROM THE CORE TO THE EDGE.

COMPACTED ACADEMIC CAMPUSES DEPLOYING AS A PRIME EDGE RELATED CORE

SUB CORES FOR SPECIAL USE OR ACADEMIC EXPANSION DEVELOPED AT POINTS OF ADVANTAGE
ACADEMIC DEVELOPMENT RELATES TO MULTIPLE INFLUENCES WITHIN THE CAMPUS

entrance

RECREATION | ATHLETICS

OPEN

entrance

C

PARKING AND SERVICE ZONES

OPEN

D

entrance

33
Campus Development

Phase One Development
The development of a concept for Governors State University must be a reflection of all the conditions that exist on the site. It must also be an expression of the program and the educational philosophies that have been developing concurrent with the evaluation of the site and its surroundings. The conditions of the land and the influences outside the site suggest criteria for location of structures.

The concept that will emerge must evolve from the influence of several factors which include:

- Good load bearing soil exists on the northern half of the site.
- User approach will be from the north.
- A transportation-commercial center is proposed north of Stuenkel Road.
- A hospital complex is proposed north of Stuenkel Road.
- Identity of the campus will be on Stuenkel Road.
- Park Forest South will develop a commercial center to the east on Exchange Road.
- Desirable topographic land occurs on the north half.
- The initial phases of construction will serve 6,000 students.
- Parking will be provided at a 2 to 1 ratio.
- The buildings should recognize severe weather conditions.
- Community related facilities should be planned for.
- Expansion potential should be provided.
- Views to and from the site are equally important.
- The elements of natural environment should be retained.
- Walking dimensions should not exceed 1,500 feet in the academic complex.
- Service demands should be met efficiently.

CONCEPT DEVELOPMENT
The conditions and influences of the site suggested various developmental schemes of campus organization. Six preliminary concepts were studied for their appropriateness in meeting the criteria established by site and program. These concepts in their broad form satisfy the established criteria. The strengths of each preliminary concept were studied and combined into a general framework upon which a final development plan would evolve. A brief description of the preliminary concepts follows:

**A** - Enclosed totally interconnected linear building situated on the ridge line having a complex of academic related buildings to the north and community facilities toward the south, outward oriented.

**B** - Similar to "A" with academic related and community facilities reversed.

**C** - Linear expression of non-interconnected units having inward orientation to courtyards.

**D** - Interconnected cluster of units around a central courtyard. Expansion occurs by duplicating similar group elsewhere on site.

**E** - Linear development of interconnected spaces and structures which includes community/cultural and related facilities as part of structural system.

**F** - Linear expression of interconnected buildings with the open center providing circulation and access to all facilities with the group.
Formulation of a final concept for the campus of Governors State University has evolved through the design process. The physical expression of the campus spaces has developed in response to the natural dictates of the site and the surrounding area. The land has suggested patterns of organization and construction in much the same way that the community has suggested patterns of circulation and approach. A strong concern for the environment has established criteria for creation of a campus that encourages compatibility with our natural resources in the preservation of patterns and cycles.

The guidelines that have brought the development of this campus to the final design concept stage stem from the guiding concepts of Governors State University. These being: Humaneness
Openness
Responsiveness
Efficiency
Service
Flexibility

The following diagram summarizes the basic elements of the campus and indicates the reasons for recommendation of this campus design concept.
CONCEPT G

- Surface drainage is maintained.
- The building takes advantage of existing swales for visual emphasis.
- Through traffic on the site is eliminated.
- Parking areas are convenient to all parts of the building.
- Buffers and other reforestation can further enhance the development.
- A strong relationship can occur to the proposed facilities north of Stuenkel Road.
- Service access is convenient and efficient.
- The structure is totally interconnected.
- Small courts provide gardens within the complex.
- Parking areas occur to the south.
- The building is located on the ridge line highest point on the site.
- The linear arrangement allows for expansion at both ends into community or academic related facilities.
- The structure allows for distant views.
- The general shape conforms to the topography along the ridge line.
- The kettle hole areas have been avoided.
- Some kettle holes can be converted to lakes for interest near the structure.
Phases one and two will be planned for a total of 6000 students. These students will occupy approximately 470,000 gross square feet of space which will constitute the programmed area presently known. Future development of the academic campus is a certainty as is the development of community related facilities, academic related facilities and non-academic needs. These will gradually occur on the site and will correspond in time to the enrollment increases of the campus and the growth patterns of the area. Subsequent phases of development of the campus are assignable in terms of land use, they are somewhat vague however in terms of time and dimension. The location of phase one will contribute significantly to the long range success of the campus organization. It will serve as a keystone for future development and will assure that as academic space is required, it will be attached as a logical expansion of a properly initiated structure. The same is true of non-academic facilities for they will benefit from a well defined campus phasing and land use plan.

PHASING
6

The Campus Plan
The final plan as shown here is an attempt to define the potential of the site for an undetermined period of time. It remains a diagrammatic expression of site elements as they can intelligently be related to the known patterns of development. Phase one has been responsible for planning of the major approach to the campus. As the region develops and population spreads to the south, it is certain that community approaches to the site will respond to the shift. This increased regional development will accelerate the need for community cultural facilities and other non-academic uses on the site. The following elements of the plan have been considered and are described as they apply to the final plan.

Academic Growth. The academic facilities for this campus will continue to grow from the Phase one megastructure. The pattern will correspond to natural topographic features and maintain the concept of enclosure. Planted courtyards will occur throughout the structure as transitional elements between the buildings and the open site.

Circulation. The public perimeter roads will be an essential part of the circulation pattern of the campus as it continues to develop. Approaches into the campus will respond to community influences of major roadway networks and population concentrations. Cross campus traffic will be discouraged in lieu of site penetrations which terminate at parking or service facilities. Minimal conflicts of cars and pedestrians will be a continuing goal. Service access and convenience will be recognized and provided for but not to the degree of minimizing other values of the campus.

Parking. Cars will be accommodated in lots of approximately 200 spaces adjacent to the building and softened by landscaping. The lots will be interrupted by bands of trees which will serve to tie the structure to the open site and provide pedestrian routes of a more desirable scale and character. The ratio of spaces to students may vary in years to come. However, the plan is presently based upon a commuter need of two students per parking space.

THE CAMPUS PLAN
Physical Education and Recreation. The capacity of the site has allowed adequate space for this use. The degree of usability is dependent upon equipment and facilities for programmed activities. The areas available anticipate the use of these facilities by university and community alike.

Community Cultural Center. Within the site for mutual benefit of the university and the community will be facilities that offer a variety of activities which encourage community participation and interaction:
- Theater
- Fine Arts Center
- Field House

Vegetation. The landscape patterns of the site should accomplish a variety of goals but within a structure that lends continuity to the overall land use patterns of the campus. The hedge rows that recall agricultural activity on the site should become the elements of spatial control as well as breaks against the strong west winds. Their effectiveness as buffers would benefit the campus by excluding visual and audible pollution. The Thorn Creek Area indicates a hint of the Forest Preserve District to the northeast. Forestation of the site in broad strokes would extend the character of the Preserves and would act as an effective emphaser of campus open spaces.

Natural features of the site such as Thorn Creek should be considered for special development. Careful use of these areas will help to assure that the goal of maintaining the natural environment is met regarding drainage, run-off and erosion. The soil conditions of the site indicate kettles occurring in the morainal uplands which offer potentials for lake development. This would provide a desirable natural feature and utilize presently poor soil areas.
CREDITS

- Brochure Design: JJR Graphics
- Printing: Braun-Brumfield Inc.