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Abstract 
 

 

 

Number theory is the study of natural numbers and one of the oldest branches of mathematics. 

Elementary number theory concepts are integrated into K-12 learning experience. This paper will 

identify ideas and methods in elementary number theory that could be connected to K-12 

education and taught in high school classrooms. In fact, Common Core Standards in 

Mathematics include some basic concepts and skills in elementary number theory. In this study, 

we will focus on the greatest common divisor, Euclid's algorithm, least common 

multiple, factorization and divisibility criteria (divisible by 2, 3, 4, 5, 6, 8, 9, and 11). We hope 

that learning these contents could foster students’ interests in mathematics and help them 

develop computational and reasoning skills. 
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Chapter 1: Prime Numbers  

1.1 What are Prime Numbers?  

Early on in elementary school, prime numbers are covered in our educational system. 

Between fourth and fifth grades, students are expected by the Common Core Standards to learn 

about prime numbers. To help students develop their understanding of division and 

multiplication, the common core state standards present this concept at an early age. If a teacher 

writes some integers greater than 1 such as 2, 3, 4, 5, 6, 7 and 8 on the board and asks students to 

find the factors for each number, they can understand that 2, 3, 5, and 7 have no other positive 

factors except 1, and itself but 4 = 2(2), 6 = 2(3) and 8 = 2(2)(2). We say that 4, 6 and 8 are 

divisible by 2 and 2 is their common divisor. In general, if 𝑎, 𝑏 and 𝑐 are integers and 𝑎 =

𝑏𝑐, then we say that 𝑎 is divisible by 𝑏 and 𝑐 or 𝑏 divides 𝑎 and 𝑐 divides 𝑎, written 𝑏|𝑎 and 𝑐|𝑎.  

Definition 1.1.1. A prime number is a natural number that is greater than 1 and not a product 

of two smaller natural numbers other than 1 and itself. 

Example 1.1.1. The integers 2, 3, 5, 13, 101, and 163 are primes.    

Definition 1.1.2. An integer greater than 1 that is not prime is called a composite number. 

Example 1.1.2. The integers 4 = 2(2), 8 = 4 ⋅ 2, 33 = 3 ⋅ 11, 111 = 3 ⋅ 37 , and 1001 =

7 ⋅ 11 ⋅ 13 are composite. 

1.2 Infinitely Many Primes Numbers  

Even just imagining it might seem impossible, there exist an unlimited number of primes, 

and we do not know all of them. There are several techniques to demonstrate the existence of an 

endless number of primes. We will discuss Euclid’s proof of the infinity of primes in the 

following paragraph. 
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Suppose that 𝑝1 = 2 < 𝑝2 = 3 < . . . < 𝑝𝑟 are all the primes. Let 𝑃 =  𝑝1𝑝2. . . 𝑝𝑟 + 1. 

Then by the assumption, 𝑃 is not a prime. If 𝑝 is a prime dividing 𝑃, then p cannot be any 

of 𝑝1,  𝑝2, . . . ,  𝑝𝑟, otherwise 𝑝 would divide the difference 𝑃 − 𝑝1𝑝2. . . 𝑝𝑟 = 1, which is 

impossible. So, this prime 𝑝 is a new prime which is not included in the list of 

primes:  𝑝1,  𝑝2, . . . ,  𝑝𝑟 . We get a contradiction and reach the conclusion that there are infinitely 

many primes. 

 

1.3 Basic Properties of Divisibility  

Theorem 1.3.1. If 𝑎, 𝑏, and 𝑐 are integers with 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐.   

 Proof. Because 𝑎|𝑏 and 𝑏|𝑐, there are integers 𝑒 and 𝑓 such that 𝑎𝑒 = 𝑏 and 𝑏𝑓 = 𝑐.  Hence, 

𝑐 = 𝑏𝑓 = (𝑎𝑒)𝑓 = 𝑎(𝑒𝑓), and we conclude that 𝑎|𝑐.                                                               □ 

Example 1.3.1. If n is composite, then we can write 𝑛 = 𝑎𝑏, where 𝑎 and 𝑏 are integers with 

1 < 𝑎 ≤ 𝑏 < 𝑛. We must have 𝑎 ≤ √𝑛, since otherwise 𝑏 ≥ 𝑎 > √𝑛 and 𝑎𝑏 > √𝑛 · √𝑛  =  𝑛. 

Now, according to Lemma 1.3.1 below, 𝑎 must have a prime divisor, which is proven to be 

smaller than or equal to 𝑎 by Theorem 1.3.1 and is also a divisor of 𝑛 (Rosen, 1984).   

Well-Ordering Principle. Any nonempty set of natural numbers has a least element. 

Lemma 1.3.1. Every integer greater than 1 has a prime divisor. 

Proof. We prove the lemma by contradiction. We assume that there is a positive integer greater 

than 1 having no prime divisors. Then, since the set of positive integers greater than 1 with no 

prime divisors is nonempty, the well-ordering property tells us that there is a least positive 

integer 𝑛 greater than 1 with no prime divisors. Because 𝑛 has no prime divisors and 𝑛 divides 𝑛, 

we see that 𝑛 is not prime. Hence, we can write 𝑛 = 𝑎𝑏 with 1 < 𝑎 < 𝑛 and 1 < 𝑏 < 𝑛. Because 

𝑎 < 𝑛, 𝑎 must have a prime divisor. By Theorem1.3.1, any divisor of 𝑎 is also a divisor of 𝑛, so 
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𝑛 must have a prime divisor, contradicting the fact that 𝑛 has no prime divisors. We can 

conclude that every positive integer greater than 1 has at least one prime divisor.                      □ 

 For relatively small integer 𝑛, there is a method, called the Sieve of Eratosthenes, to find 

all primes less than 𝑛. We will explain the Sieve of Eratosthenes by the following example.   

Example 1.3.2. Find all primes less than 100.  

Step 1.  List all integers from 1 to 100. 

 

Step 2. Keep 2 and mark out 1 and all multiples of 2 which are greater than 2. 

 

Step 3. Keep 3 and mark out all multiples of 3 that are greater than 3. 

 

Step 4. Keep 5 and mark out all multiples of 5 that are greater than 5. 

 

Step 5. Continue in this way until on the list all composite numbers are marked. 

Note: 7 is the next prime number after 5. 

 

Figure 1.3.1: Using the sieve of Eratosthenes to find the primes less than 100. 
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Chapter 2: Greatest Common Divisor  

2.1 Connecting GCD with K-12  

             The greatest common divisor (GCD), also called the greatest common factor (GCF), of 

two or more integers is the largest positive integer that is a divisor of all the given integers. An 

especially useful property of the GCD is that it can be represented as a sum of the given numbers 

with integer coefficients. From here it immediately follows that the greatest common divisor of 

several numbers is divisible by any other common divisor of these numbers. 

            The greatest common divisor plays a similar role in our schools but may be better known 

as the greatest common factor in the Common Core Standards (The Number System 6.NS.B.4). 

GCF is introduced in school around 6th grade. Students at this level are expected to be able to list 

all the factors for every number up to 100. Between the grades of 9 and 12, more specifically in 

Algebra 1 and Algebra 2, the greatest common factor is revisited. In this chapter, we will go over 

some concepts on divisors and GCD. 

 

2.2 Divisibility  

Divisibility is a main concept in number theory.   

Definition 2.2.1.  (1) Let 𝑎 and 𝑏 be two integers. If there is an integer 𝑐 such that 𝑏 = 𝑎𝑐, then 

we say that 𝑎 divides 𝑏, written 𝑎|𝑏.  

(2) If 𝑎|𝑏, we say that 𝑎 is a divisor or factor of 𝑏 and 𝑏 is 𝑎 multiple of 𝑎.  

(3) If 𝑎 is not a factor of  𝑏, then we say that 𝑎 does not divide 𝑏, written 𝑎 ∤ 𝑏.   

To avoid notation confusion, two different symbols 𝑎|𝑏 (divisibility relation) and 𝑎/𝑏 (a 

quotient obtained when 𝑎 is divided by 𝑏) should be stressed in class to students.  
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Example 2.2.1. The following examples demonstrate the idea of integer divisibility:  

13|182, −5|30, 17|289, 6 ∤ 44, 7 ∤ 50, −3|33,  and 17|0. 

Example 2.2.2. The divisors of 6 are ±1, ±2, ±3, and ± 6. The divisors of 17 are ±1, and  

±17. The divisors of 100 are ±1, ±2, ±4, ±5, ±10, ±20, ±25, ±50, and ± 100. 

Example 2.2.3. Because 11|66 and 66|198, by Theorem 2.2.1, 11|198.    

Theorem 2.2.1. Let 𝑎, 𝑏, 𝑐, 𝑚, and 𝑛 be integers. If 𝑐|𝑎 and 𝑐|𝑏, then 𝑐|(𝑚𝑎 + 𝑛𝑏).   

Proof. Because 𝑐|𝑎 and 𝑐|𝑏, there are integers 𝑒 and 𝑓 such that 𝑎 = 𝑐𝑒 and 𝑏 = 𝑐𝑓.  Hence, 

𝑚𝑎 + 𝑛𝑏 = 𝑚𝑐𝑒 + 𝑛𝑐𝑓 = 𝑐(𝑚𝑒 + 𝑛𝑓). Consequently, we see that 𝑐|(𝑚𝑎 + 𝑛𝑏).                □ 

Example 2.2.4. As 3|21 and 3|33, Theorem 2.2.2 tells us that 3 divides 21 ⋅ 5 + 3 ⋅ 33 = 105 +

99 = 204. 

Theorem 2.2.2. (The Division Algorithm). If 𝑎 and 𝑏 are integers such that 𝑏 > 0, then there 

are unique integers 𝑞 and 𝑟 such that 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏.   

In Theorem 2.2.2, 𝑞 is called the quotient and 𝑟 is called the remainder. We also call 𝑎 

the dividend and 𝑏 the divisor. By the division algorithm, 𝑎 is divisible by 𝑏 if and only if the 

remainder 𝑟 in the division algorithm is 0. Let us look at some examples of the division 

algorithm. 

Example 2.2.5. If 𝑎 = 133 and 𝑏 = 21, then 𝑞 = 6 and 𝑟 = 7, because 133 = 21 ⋅ 6 + 7 and 

0 ≤ 7 < 21. Likewise, if 𝑎 = −50 and 𝑏 = 8, then 𝑞 = −7 and 𝑟 = 6, because −50 = 8 ⋅

(−7) + 6 and 0 ≤ 6 < 8. 

 We will use the Well-Ordering Principle to prove Theorem 2.2.2. 

Proof. Consider the set 𝑆 of all integers of the form 𝑎 − 𝑏𝑘, where 𝑘 is an integer, that is, 𝑆 =

{𝑎 − 𝑏𝑘|𝑘 ∈ 𝑍}. Let 𝑇 be the set of all nonnegative integers in 𝑆. 𝑇 is nonempty, because 𝑎 − 𝑏𝑘 

is positive whenever 𝑘 is an integer with 𝑘 < 𝑎/𝑏. By the well-ordering, 𝑇 has a least element 
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𝑟 = 𝑎 − 𝑏𝑞 (for an integer 𝑞). We know that 𝑟 ≥ 0 by construction. If 𝑟 ≥ 𝑏, then 𝑟 > 𝑟 − 𝑏 =

𝑎 − 𝑏𝑞 − 𝑏 = 𝑎 − 𝑏(𝑞 + 1) ≥ 0, which contradicts the choice of 𝑟 = 𝑎 − 𝑏𝑞 as the least 

nonnegative integer of the form 𝑎 − 𝑏𝑘. Hence, 0 ≤ 𝑟 < 𝑏. We complete the proof of existence 

of q and r.  

To show that these values for 𝑞 and 𝑟 are unique, assume that we have two equations 𝑎 =

𝑏𝑞1 + 𝑟1 and 𝑎 = 𝑏𝑞1 + 𝑟2, with 0 ≤ 𝑟1 < 𝑏 and 0 ≤ 𝑟2 < 𝑏. By subtracting the second equation 

from the first equation, we find that 0 = 𝑏(𝑞1 − 𝑞2) + (𝑟1 − 𝑟2). Hence, we see that 𝑟2 − 𝑟1 =

𝑏(𝑞1 − 𝑞2) which gives that b divides 𝑟2 − 𝑟1. Because 0 ≤ 𝑟1 < 𝑏 and 0 ≤ 𝑟2 < 𝑏, we have 

−𝑏 < 𝑟2 − 𝑟1 < 𝑏. Hence, 𝑏 can divide 𝑟2 – 𝑟1 only if 𝑟2 − 𝑟1 = 0 or 𝑟1 = 𝑟2.  Because 𝑏𝑞1 +

𝑟1 = 𝑏𝑞2 + 𝑟2 and 𝑟1 = 𝑟2, we have 𝑞1 = 𝑞2. This shows that the quotient 𝑞 and the remainder 

𝑟 are unique.                                                                                                                                 □ 

Example 2.2.6. Let 𝑎 = 1028 and 𝑏 = 34. Then 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏, where 𝑞 = 30 and 

𝑟 = 8.  

Example 2.2.7. Let 𝑎 = −380 and 𝑏 = 75. Then 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏, where 𝑞 = −6 

and 𝑟 = −380 − (−6)75 = 70. 

 

Divisibility Rules 

The divisibility rules are a set of criteria for determining if a large number can be divided by a 

smaller number. The following are the rules for divisibility for numbers 1 through 6. 

• Each positive integer can be divided by 1. 

• If the dividend's final digit is even, then it can be divided by 2. 

• A positive integer is divisible by three if the sum of dividend's total digits is multiple   

of three. 
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• If the dividend's final two digits can be divided by four, then this integer is divisible by 

four. 

• If the dividend's last digit is 0 or 5, the integer is divisible by 5. 

• If the dividend is divisible by 2 and 3, then the integer is divisible by 6. 

 

We will prove them in Chapter 5 as well as explain more divisibility rules. 

 

2.3 Greatest Common Divisor 

If 𝑎 and 𝑏 are integers, not both 0, then the set of common divisors of 𝑎 and 𝑏 is a finite 

set of integers, always containing the integers +1 and −1. We are interested in the largest integer 

among the common divisors of the two integers.  

Definition 2.3.1. The greatest common divisor of two integers 𝑎 and 𝑏, which are not both 0, 

denoted by (𝑎, 𝑏) is the largest integer that divides both 𝑎 and 𝑏.  

The greatest common divisor is also denoted by 𝑔𝑐𝑑(𝑎, 𝑏).   

Example 2.3.1. The common divisors of 24 and 84 are ±1, ±2, ±3, ±4, ±6, and ±12. Hence, 

(24, 84) = 12. Similarly, looking at sets of common divisors, we find that (15, 81) = 3,

(100, 5) = 5, (17, 25) = 1, (0, 44) = 44, (−6, −15) = 3, and (−17, 289) = 17. 

We are particularly interested in pairs of integers sharing no common divisors greater than 1. 

Such pairs of integers are called relatively prime.  

Definition 2.3.2. The integers 𝑎 𝑎𝑛𝑑 𝑏, with 𝑎 ≠ 0 𝑎𝑛𝑑 𝑏 ≠ 0, are relatively prime if 𝑎 𝑎𝑛𝑑 𝑏 

have greatest common divisor (𝑎, 𝑏) = 1.  

Example 2.3.2. Because (25, 42) = 1, 25 and 42 are relatively prime. 
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Theorem 2.3.1. Let 𝑎 𝑎𝑛𝑑 𝑏 be integers with (𝑎, 𝑏) = 𝑑, then (𝑎/𝑑, 𝑏/𝑑) = 1. In other words, 

𝑎/𝑑 𝑎𝑛𝑑 𝑏/𝑑 are relatively prime.  

Proof. Let 𝑎 and 𝑏 be integers with (𝑎, 𝑏) = 𝑑. We will show that 𝑎/𝑑 and 𝑏/𝑑 have no 

common positive divisors other than 1. Assume that 𝑒 is a positive integer such that 𝑒|(𝑎/𝑑) and 

𝑒|(𝑏/𝑑). Then there are integers 𝑘 and 𝑙 with a/𝑑 = 𝑘𝑒 and 𝑏/𝑑 = 𝑙𝑒,  so that 𝑎 = 𝑑𝑒𝑘 and 𝑏 =

𝑑𝑒𝑙. Hence, the product 𝑑𝑒 is a common divisor of 𝑎 and 𝑏. Because 𝑑 is the greatest common 

divisor of 𝑎 and 𝑏, 𝑑𝑒 ≤ 𝑑, so that 𝑒 must be 1. Consequently, (𝑎/𝑑, 𝑏/𝑑) = 1.                        □      

The following corollary shows that every fraction equals a fraction in the simplest form. 

Corollary 2.3.1. If 𝑎 and 𝑏 ≠ 0 are integers, then 𝑎/𝑏 = 𝑝/𝑞 for some integers 𝑝 and 𝑞 ≠ 0 

with  (𝑝, 𝑞) = 1.   

Proof. Suppose that 𝑎 and 𝑏 ≠ 0 are integers. Set 𝑝 = 𝑎/𝑑 and 𝑞 =
𝑏

𝑑
, where 𝑑 = (𝑎, 𝑏). Then 

𝑝/𝑞 = (𝑎/𝑑)/(𝑏/𝑑) = 𝑎/𝑏. By Theorem 2.3.1, (𝑝, 𝑞) = 1, proving the corollary.                □ 

Theorem 2.3.2. Let a, b, and c be integers. Then (𝑎 + 𝑐𝑏, 𝑏) = (𝑎, 𝑏). 

Proof. Let 𝑑 = (𝑎, 𝑏) and 𝑑′ = (𝑎 + 𝑐𝑏, 𝑏). Since 𝑑|𝑎 and 𝑑|𝑏, by Theorem 2.2.1, 𝑑|(𝑎 + 𝑐𝑏). 

So 𝑑 is a common divisor of 𝑎 + 𝑐𝑏 and 𝑏 which gives 𝑑 ≤ 𝑑′.  Similarly, since 𝑑′|(𝑎 + 𝑐𝑏) and 

𝑑′|𝑏, we have 𝑑′|𝑎 and 𝑑′|𝑏. Therefore 𝑑′ is a common divisor of 𝑎 and 𝑏 which shows 𝑑′ ≤  𝑑. 

So 𝑑 = 𝑑′.                                                                                                                                    □ 

  We will show that the greatest common divisor of the integers 𝑎 and 𝑏, not both 0, can be 

written as a sum of multiples of 𝑎 and 𝑏. To phrase this better, we use the following definition.  

Definition 2.3.3. If 𝑎 and 𝑏 are integers, then a linear combination of 𝑎 and 𝑏 is a sum of the 

form 𝑚𝑎 + 𝑛𝑏, where both 𝑚 and 𝑛 are integers.   

Example 2.3.3 What are the linear combinations 9𝑚 + 15𝑛, where 𝑚 and 𝑛 are both integers? 

Among these combinations are −6 = 1(9) + (−1)15; −3 = (−2)9 + 1(15);  0 =  0(9) +
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0(15);  3 = 2(9) + (−1)15;  6 = (−1)9 + 1(15); and so on. It can be shown that the set of all 

linear combinations of 9 and 15 is the set {. . . , −12, −9, −6, −3, 0, 3, 6, 9, 12, . . . } . 

Theorem 2.3.3. The greatest common divisor of the integers 𝑎 𝑎𝑛𝑑 𝑏, not both 0, is the least 

positive integer that is a linear combination of 𝑎 𝑎𝑛𝑑 𝑏.   

Proof. Let 𝑑 be the least positive integer that is a linear combination of 𝑎 and 𝑏. There is a least 

such positive integer, using the well-ordering property, since at least one of two linear 

combinations 1 ∙ 𝑎 + 0 ⋅ 𝑏 and −1 ⋅ 𝑎 + 0 ⋅ 𝑏, where 𝑎 ≠ 0, is positive. We write  

                                         𝑑 = 𝑚𝑎 + 𝑛𝑏,                     (2.3.1)  

where 𝑚 and 𝑛 are integers. We will show that 𝑑|𝑎 and 𝑑|𝑏. By the division algorithm, we have 

𝑎 = 𝑑𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑑. From this equation and (2.3.1), we see that  𝑟 = 𝑎 − 𝑑𝑞 = 𝑎 − 𝑞(𝑚𝑎 +

𝑛𝑏) = (1 − 𝑞𝑚)𝑎 − 𝑞𝑛𝑏. This shows that the integer 𝑟 is a linear combination of 𝑎 and 𝑏. 

Because 0 ≤ 𝑟 < 𝑑, and 𝑑 is the least positive linear combination of 𝑎 and 𝑏, we conclude 

that 𝑟 = 0, and hence 𝑑|𝑎. In a similar manner, we can show that 𝑑|𝑏.   

We have shown that 𝑑, the least positive integer that is a linear combination of 𝑎 and 𝑏, is 

a common divisor of 𝑎 and 𝑏. What remains to be shown is that it is the greatest common divisor 

of 𝑎 and 𝑏. To show this, all we need to show is that any common divisor 𝑐 of 𝑎 and 𝑏 must 

divide 𝑑, since any proper positive divisor of 𝑑 is less than 𝑑. Because 𝑑 = 𝑚𝑎 + 𝑛𝑏,  if 𝑐|𝑎 and 

𝑐|𝑏, then by Theorem 2.2.1, 𝑐|𝑑, so 𝑑 ≥ 𝑐.  This concludes the proof.                                          □ 

Theorem 2.3.4. If 𝑎 and 𝑏 are positive integers, then the set of linear combinations of 𝑎 and 𝑏 is 

the set of integer multiples of (𝑎, 𝑏).   

Proof. Suppose that 𝑑 = (𝑎, 𝑏). We first show that every linear combination of 𝑎 and 𝑏 is a 

multiple of 𝑑. By the definition of greatest common divisor, we know that 𝑑|𝑎 and 𝑑|𝑏. Now 
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every linear combination of 𝑎 and 𝑏 is of the form 𝑚𝑎 + 𝑛𝑏, where 𝑚 and 𝑛 are integers. By 

Theorem 2.2.1, it follows that 𝑑 divides 𝑚𝑎 + 𝑛𝑏. That is, 𝑚𝑎 + 𝑛𝑏 is a multiple of 𝑑.   

We now show that every multiple of 𝑑 is also a linear combination of 𝑎 and 𝑏. By 

Theorem 2.3.3, we know that there are integers 𝑟 and 𝑠 such that 𝑑 = (𝑎, 𝑏) = 𝑟𝑎 + 𝑠𝑏. 

Multiplying both sides of the equation 𝑑 = 𝑟𝑎 + 𝑠𝑏 by 𝑗, we see that 𝑑𝑗 = (𝑗𝑟)𝑎 + (𝑗𝑠)𝑏. 

Consequently, every multiple of 𝑑 is a linear combination of 𝑎 and 𝑏. This completes the proof.  

                                                                                                                                         □                                            

Theorem 2.3.5. If 𝑎 and 𝑏 are integers, not both 0, then a positive integer 𝑑 is the greatest 

common divisor of 𝑎 and 𝑏 if and only if   

i.  𝑑|𝑎 𝑎𝑛𝑑 𝑑|𝑏, and 

ii.  𝑖𝑓 𝑐 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐|𝑎 𝑎𝑛𝑑 𝑐|𝑏, 𝑡ℎ𝑒𝑛 𝑐|𝑑.   

Proof. We will first show that the greatest common divisor of 𝑎 and 𝑏 has these two properties. 

Suppose 𝑑 = (𝑎, 𝑏). By the definition of common divisor, we know that 𝑑|𝑎 and 𝑑|𝑏. By 

Theorem 2.3.3, we know that 𝑑 = 𝑚𝑎 + 𝑛𝑏, where 𝑚 and 𝑛 are integers. Consequently, if 𝑐|𝑎 

and 𝑐|𝑏, then by Theorem 2.2.1, 𝑐|𝑑 = 𝑚𝑎 + 𝑛𝑏. We have now shown that if 𝑑 = (𝑎, 𝑏), then 

properties (i) and (ii) hold.   

Now assume that properties (i) and (ii) hold. Then we know that 𝑑 is a common divisor 

of 𝑎 and 𝑏. Furthermore, by property (ii), we know that if 𝑐 is a common divisor of 𝑎 and 𝑏, then 

𝑐|𝑑, so that 𝑑 = 𝑐𝑘 for some integer 𝑘. Hence, 𝑐 = 𝑑/𝑘 ≤ 𝑑. (We have used the fact that a 

positive integer divided by any nonzero integer is less than that integer.) This shows that a 

positive integer satisfying (i) and (ii) must be the greatest common divisor of 𝑎 and 𝑏.               □ 
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Definition 2.3.4. Let 𝑎1, 𝑎2, … , and 𝑎𝑛 be integers, not all 0. The greatest common divisor of 

these integers is the largest integer that is a divisor of all the integers in the set, denoted by 

(𝑎1, 𝑎2, . . . , 𝑎𝑛).  

Note that the order in which the ai’s appear does not affect the result. 

Example 2.3.4. We easily see that (12, 18, 30) = 6 and (10, 15, 25) = 5.   

 We can use the following lemma to find the greatest common divisor of a set of more than two 

integers.  

Lemma 2.3.1. If 𝑎1, 𝑎2, . . . , 𝑎𝑛 are integers, not all 0, then (𝑎1, 𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛) =

 (𝑎1, 𝑎2, . . . , 𝑎𝑛−2, (𝑎𝑛−1, 𝑎𝑛)).  

Proof. Let 𝑑 = (𝑎1, 𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛) and 𝑑′ = (𝑎1, 𝑎2, . . . , 𝑎𝑛−2, (𝑎𝑛−1, 𝑎𝑛)). Then 𝑑 is a 

common divisor of 𝑎𝑛−1 and 𝑎𝑛, and therefore a divisor of (𝑎𝑛−1, 𝑎𝑛). So 𝑑 is a common divisor 

of the 𝑛 − 1 integers 𝑎1, 𝑎2, . . . , 𝑎𝑛−2, and  (𝑎𝑛−1, 𝑎𝑛). This shows that 𝑑 is not greater than 𝑑′. 

Since 𝑑′|(𝑎𝑛−1, 𝑎𝑛), 𝑑′|𝑎𝑛−1 and 𝑑′|𝑎𝑛. As the greatest common divisor of 𝑛 − 1 integers 

𝑎1, … , 𝑎𝑛−2 and (𝑎𝑛−1, 𝑎𝑛), 𝑑′ is also a common divisor of the 𝑛 integer 𝑎1, 𝑎3, … , 𝑎𝑛−1, 𝑎𝑛. So 

𝑑′ is not greater than 𝑑. We have shown 𝑑 = 𝑑′.                                                                        □ 

Example 2.3.5. To find the greatest common divisor of the three integers 105, 140, and 350, we 

use Lemma 2.3.1 to see that (105, 140, 350) = (105, (140, 350)) = (105, 70) = 35.   

Example 2.3.6. Consider the integers 15, 21, and 35. We find that the greatest common divisor 

of these three integers is 1 using the following steps: (15, 21, 35) = (15, (21, 35)) = (15, 7) =

1.  Each pair among these integers has a common factor greater than 1, because (15, 21) = 3,

(15, 35) = 5, and (21, 35) = 7.    

Example 2.3.6 motivates the following definition.   
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Definition 2.3.5. We say that the integers 𝑎1, 𝑎2, . . . , 𝑎𝑛 are mutually relatively prime if 

(𝑎1, 𝑎2, . . . , 𝑎𝑛) = 1. These integers are called pairwise relatively prime if, for all 𝑖, 𝑗 =  1, … , 𝑛  

with 𝑖 ≠ 𝑗, (𝑎𝑖, 𝑎𝑗) = 1; that is, if each pair of integers from the set is relatively prime.   

 

                                   Chapter 3. The Euclidean Algorithm 

3.1 Euclidean Algorithm and The Common Core Standards  

 The ancient Greek mathematician Euclid first described a method to find the greatest 

common divisor of two integers in his book Elements written approximately 300 BC (Shallit, 

1994). This method is called the Euclidean Algorithm, which has many applications including a 

proof of the Fundamental Theorem of Arithmetic and cryptography: a procedure for sending 

secret messages such as credit card transactions. In Common Core State Standards, 6th graders 

should be able to find the greatest common divisor of two integers less than or equal to 100. 

(CCSS.Math.Content.6.NS.B.4). They continue to learn the greatest common divisor through 

both Algebra 1 and Algebra 2. In Algebra 2, the idea of the Euclidean algorithm for integers can 

be applied to find the greatest common divisor of two polynomials. In the following section, we 

discuss the method for integers. 

 

3.2 The Euclidean Algorithm 

Theorem 3.2.1 (The Euclidean Algorithm). Let 𝑟0 = 𝑎 and 𝑟1 = 𝑏 be integers such that 𝑎 ≥ 𝑏 >

0. If the division algorithm is successively applied to obtain 𝑟𝑗 = 𝑟𝑗+1𝑞𝑗+1 +  𝑟𝑗+2, with 0 < 𝑟𝑗+2 <

𝑟𝑗+1  for 𝑗 = 0, 1, 2, . . . , 𝑛 −  2 and 𝑟𝑛+1 = 0, then (𝑎, 𝑏) = 𝑟𝑛,  the last nonzero remainder.   
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To prove that the Euclidean algorithm produces the greatest common divisors, the following 

lemma will be helpful.   

Lemma 3.2.1. If 𝑒 and 𝑑 are integers and 𝑒 = 𝑑𝑞 + 𝑟, where 𝑞 𝑎𝑛𝑑 𝑟 are integers, then (𝑒, 𝑑) =

(𝑑, 𝑟).   

Proof. This lemma follows directly from Theorem 2.3.2: (𝑒, 𝑑) = (𝑑𝑞 + 𝑟, 𝑑) = (𝑟, 𝑑) = (𝑑, 𝑟).  

                                                                                                                                                        □                                                                                                                                                                   

         We now prove that the Euclidean algorithm produces the greatest common divisor of two 

integers.   

Proof. Let 𝑟0 = 𝑎 and 𝑟1 = 𝑏 be positive integers with 𝑎 ≥ 𝑏. By successively applying division 

algorithm in Theorem 2.2.2, we find that  

𝑟0  =  𝑟1𝑞1  + 𝑟2,     0 < 𝑟2 <  𝑟1,  

𝑟1  =  𝑟2𝑞2  + 𝑟3,    0 <  𝑟3 <  𝑟2,  

… 

𝑟𝑗−2  =  𝑟𝑗−1𝑞𝑗−1  + 𝑟𝑗,      0 < 𝑟𝑗 <  𝑟𝑗−1,  

… 

𝑟𝑛−4  =  𝑟𝑛−3𝑞𝑛−3  +  𝑟𝑛−2,      0 <  𝑟𝑛−2  <  𝑟𝑛−3, 

 𝑟𝑛−3  =  𝑟𝑛−2𝑞𝑛−2  +  𝑟𝑛−1,      0 <  𝑟𝑛−1  <  𝑟𝑛−2, 

𝑟𝑛−2  =  𝑟𝑛−1𝑞𝑛−1  +  𝑟𝑛,      0 <  𝑟𝑛 <  𝑟𝑛−1, 

𝑟𝑛−1  =  𝑟𝑛𝑞𝑛.   

We can assume that we eventually obtain a remainder of zero because the sequence of 

remainders 𝑎 = 𝑟0 ≥ 𝑟1 > 𝑟2 >. . . ≥ 0 cannot contain more than 𝑎 terms (because each 

remainder is an integer). By Lemma 3.2.1, we see that (𝑎, 𝑏) = (𝑟0, 𝑟1) = (𝑟1, 𝑟2) = (𝑟2, 𝑟3) =
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. . . = (𝑟𝑛−3, 𝑟𝑛−2 ) = (𝑟𝑛−2, 𝑟𝑛−1) = (𝑟𝑛−1, 𝑟𝑛) = 𝑟𝑛. Hence, (𝑎, 𝑏) =  𝑟𝑛, the last nonzero 

remainder.                                                                                                                           □ 

Example 3.2.1. The steps used by the Euclidean algorithm to find (252, 198) are   

252 =  1 ⋅ 198 +  54 

198 =  3 ⋅ 54 +  36 

54 =  1 ⋅ 36 +  18 

36 =  2 ⋅ 18. 

We summarize these steps in the following table: 

Table 3.2.1 

 

The last nonzero remainder (found in the next-to-last row in the last column) is the greatest 

common divisor of 252 and 198. Hence, (252, 198) = 18.  

Example 3.2.2. We apply the Euclidean algorithm to find (34, 55). Note that 𝑏 = 34  and 𝑎 =

55. We have:   

55 =  34 ⋅ 1 +  21  

 34 =  21 ⋅ 1 +  13 

  21 =  13 ⋅ 1 +  8  

 13 =  8 ⋅ 1 +  5  

 8 =  5 ⋅ 1 +  3  
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 5 =  3 ⋅ 1 +  2  

 3 =  2 ⋅ 1 +  1  

 2 =  1 ⋅ 2.  

Observe that when the Euclidean algorithm is used to find the greatest common divisor of 𝑏 =

34 and 𝑎 = 55, a total of eight divisions are required. Furthermore, (34, 55) = 1, because 1 is 

the last nonzero remainder. 

Definition 3.2.1. The Fibonacci sequence is a series of numbers in which each number 

(Fibonacci number) is the sum of the two preceding numbers.  

The first few terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …. 

Theorem 3.2.2. Let 𝑓𝑛+1 and 𝑓𝑛+2 be successive terms of the Fibonacci sequence, with 𝑛 > 1. 

Then the Euclidean algorithm takes exactly 𝑛 divisions to show that (𝑓𝑛+1 , 𝑓𝑛+2) = 1.   

Proof. Applying the Euclidean algorithm, and using the defining relation for the Fibonacci 

numbers 𝑓𝑗 = 𝑓𝑗−1 + 𝑓𝑗−2 in each step, we see that   

𝑓𝑛+2 = 𝑓𝑛+1 ⋅ 1 + 𝑓𝑛, 

𝑓𝑛+1 = 𝑓𝑛 ⋅ 1 + 𝑓𝑛+1,   

                                                                           ... 

  𝑓4 = 𝑓3 ⋅ 1 + 𝑓2,  

 𝑓3 = 𝑓2 ⋅ 2  

Hence, the Euclidean algorithm takes exactly 𝑛 divisions, to show that (𝑓𝑛+2, 𝑓𝑛+1) = 𝑓2 = 1.  

                                                                                                                                                    □ 

Lemma 3.2.2.  If 𝑓𝑛−1 + 𝑓(𝑛−2) = 𝑓𝑛 is the 𝑛𝑡ℎ term in the Fibonacci sequence, then 𝑓𝑛+1 >

𝑎𝑛−1 , for 𝑛 > 2, where 𝑎 =
1+√5

2
 is the root of 𝑎2 − 𝑎 − 1 = 0. 
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Proof. We will use mathematical induction. Let 𝑃(𝑛) be the statement 𝑓𝑛 > 𝑎𝑛−2 . We want to 

show that 𝑃(𝑛) is true when 𝑛 ≥ 3. 

First note that 𝑎 < 2 = 𝑓3. 𝑎2 =
3+√5

2
< 3 = 𝑓4, so 𝑃(3) and 𝑃(4) are true. 

Induction step: Assume that P(j) is true, namely. 𝑓𝑗 > 𝑎𝑗−2 for all integers 𝑗 with 3 ≤ 𝑗 ≤ 𝑘 for 

some 𝑘 ≥ 4. 

We now show that 𝑃(𝑘 + 1) is true, that is, 𝑓𝑘+1 > 𝑎𝑘+1−2 = 𝑎𝑘−1. In fact 

                                                             𝑓𝑘+1 = 𝑓𝑘 + 𝑓𝑘−1 > 𝑎𝑘−2 + 𝑎𝑘−3 (by induction hypothesis) 

                                                                      = (𝑎 + 1)𝑎𝑘−3    (since a is a root of 𝑥2 − 𝑥 − 1 = 0) 

= 𝑎2 ⋅ 𝑎𝑘−3 = 𝑎𝑘−1  

It follows that 𝑃(𝑘 + 1) is true.                                                                                               □ 

Theorem 3.2.3 (Lamè’s Theorem). The number of divisions needed to find the greatest common 

divisor of two positive integers using the Euclidean algorithm does not exceed five times the 

number of decimal digits in the smaller of the two integers.   

Proof. When we apply the Euclidean algorithm to find the greatest common divisor of 𝑎 = 𝑟0 

and 𝑏 = 𝑟1 with 𝑎 > 𝑏, we obtain the following sequence of equations:  

𝑟0 = 𝑟1𝑞1  + 𝑟2,     0 < 𝑟2 < 𝑟1, 

 𝑟1 = 𝑟2𝑞2  + 𝑟3, 0 < 𝑟3 < 𝑟2,  

… 

𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛−1 + 𝑟𝑛, 0 < 𝑟𝑛 <  𝑟𝑛−1,   

𝑟𝑛−1 = 𝑟𝑛𝑞𝑛.  
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We have used 𝑛 divisions. We note that each of the quotients 𝑞1, 𝑞2, . . . , 𝑞𝑛−1 ≥ 1, and 𝑞𝑛 ≥ 2, 

because 𝑟𝑛 < 𝑟𝑛−1. Therefore,   

𝑟𝑛 ≥ 1 = 𝑓2,  

𝑟𝑛−1 ≥ 2𝑟𝑛 ≥ 2𝑓2 = 𝑓3, 

𝑟𝑛−2 ≥ 𝑟𝑛−1 + 𝑟𝑛 ≥ 𝑓3 + 𝑓2 = 𝑓4, 

𝑟𝑛−3 ≥ 𝑟𝑛−2 + 𝑟𝑛−1 ≥ 𝑓4 + 𝑓3 = 𝑓5, 

… 

 𝑟2 ≥ 𝑟3 + 𝑟4 ≥ 𝑓𝑛−1 + 𝑓𝑛−2 = 𝑓𝑛,  

𝑏 = 𝑟1 ≥ 𝑟2 + 𝑟3 ≥ 𝑓𝑛 + 𝑓𝑛−1 = 𝑓𝑛+1. 

Thus, 𝑏 ≥ 𝑓𝑛+1. We know that 𝑓𝑛+1 > 𝑎𝑛−1 for 𝑛 > 2, where 𝑎 =
1+ √5

2
. Hence,  𝑏 > 𝑎𝑛−1. 

Now, because log10 𝑎 >
1

5
, we see that log10 𝑏 > (𝑛 −  1) log10 𝑎 >

𝑛−1

5
. Consequently,  

𝑛 − 1 < 5 log10 𝑏. 

Let 𝑏 have 𝑘 decimal digits, so that 𝑏 < 10𝑘 and log10 𝑏 < 𝑘. Hence, we see that 𝑛 − 1 < 5𝑘, 

and because 𝑘 is an integer, we can conclude that 𝑛 ≤ 5𝑘.                                                       □ 

The Euclidean algorithm can be used to express the greatest common divisor of two 

integers as a linear combination of these integers. We illustrate this by expressing (252, 198) =

18 as a linear combination of 252 and 198. Referring to the steps of the Euclidean algorithm 

used to find (252, 198), by the next to the last step we see that 18 = 54 − 1 ⋅ 36. By the 

preceding step, it follows that 36 = 198 − 3 ⋅ 54 which implies that 18 = 54 −

1(198 − 3 ⋅ 54) = 4 ⋅ 54 − 1 ⋅ 198. Likewise, by the first step, we have 54 = 252 − 1 ⋅ 198 so 

that 118 = 4(252 − 1 ∙ 198) − 1 ⋅ 198 = 4 ⋅ 252 − 5 ⋅ 198.  This last equation exhibits 18 =

(252, 198) as a linear combination of 252 and 198.  
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In general, to see how 𝑑 = (𝑎, 𝑏) may be expressed as a linear combination of 𝑎 and 𝑏, 

we can rewrite the equations in the Euclidean algorithm backwards and obtain an equation 𝑎𝑠 +

𝑏𝑡 = 𝑑, where 𝑠 and 𝑡 are integers. This equation is called the Bezout's identity. By the 

penultimate equation, we have 𝑟𝑛 = (𝑎, 𝑏) = 𝑟𝑛−2 − 𝑟𝑛−1𝑞𝑛−1. This expresses (𝑎, 𝑏) as a linear 

combination of 𝑟𝑛−2 and 𝑟𝑛−1. The second to last equation can be used to express 𝑟𝑛−1 as 𝑟𝑛−3 −

𝑟𝑛−2𝑞𝑛−2. Using this last equation to eliminate 𝑟𝑛−1 in the previous expression for (𝑎, 𝑏), we find 

that 𝑟𝑛−1 = 𝑟𝑛−3 − 𝑟𝑛−2𝑞𝑛−2, so that (𝑎, 𝑏) = 𝑟𝑛−2 − (𝑟𝑛−3 − 𝑟𝑛−2𝑞𝑛−2)𝑞𝑛−1 =

(1 + 𝑞𝑛−1𝑞𝑛−2)𝑟𝑛−2 − 𝑞𝑛−1𝑟𝑛−3, which expresses (𝑎, 𝑏) as a linear combination of 𝑟𝑛−2 and 

𝑟𝑛−3. We continue working backward through the steps of the Euclidean algorithm to express 

(𝑎, 𝑏) as a linear combination of each preceding pair of remainders, until we have found (𝑎, 𝑏) as 

a linear combination of 𝑟0 = 𝑎 and 𝑟1 = 𝑏. Specifically, if we have found at a particular stage 

that (𝑎, 𝑏) = 𝑠𝑟𝑗 + 𝑡𝑟𝑗−1, then, because  𝑟𝑗 = 𝑟𝑗−2 − 𝑟𝑗−1𝑞𝑗−1, we have (𝑎, 𝑏) = 𝑠(𝑟𝑗−2 −

𝑟𝑗−1𝑞𝑗−1) + 𝑡𝑟𝑗−1 = (𝑡 − 𝑠𝑞𝑗−1)𝑟𝑗−1 + 𝑠𝑟𝑗−2. This shows how to move up through the equations 

that are generated by the Euclidean algorithm so that, at each step, the greatest common divisor 

of 𝑎 and 𝑏 may be expressed as a linear combination of 𝑎 and 𝑏. 
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Chapter 4 Least Common Multiple 

4.1 Common Core and Least Common Multiple  

The least common multiple (LCM) is introduced as early as 6th grade (CCSS-Math 6.NS.B.4) 

but is used throughout K-12. The least common multiple of two or more integers is the least 

positive integer that is a multiple of these given integers. Students will build upon their mastery 

of LCM to find common denominators when adding fractions. One way to calculate the LCM of 

several integers is to factor each integer into a product of prime numbers. One can also construct 

the GCD using prime factorization. These methods are taught in elementary and middle schools 

and reinforced in high school. 

4.2 Fundamental Theorem of Arithmetic 

The Fundamental Theorem of Arithmetic states that every integer greater than 1 can be 

factored uniquely into a product of primes. 

Theorem 4.2.1 (Fundamental Theorem of Arithmetic). Every integer greater than 1 can be 

written in the form 𝑝1
𝑛1𝑝2

𝑛2 … . 𝑝𝑘
𝑛𝑘 , where 𝑛𝑖  ≥  0 and the 𝑝𝑖’𝑠 are distinct primes. The 

factorization is unique, except possibly for the order of the factors. 

For example, 4312 = 2 · 2156 = 2 · 2 · 1078 = 2 · 2 · 2 · 539 = 2 · 2 · 2 · 7 · 77 = 2 · 2 · 2 ·

7 · 7 · 11. So  4312 = 23 · 72 · 11. 

We need two useful lemmas before we prove the Fundamental Theorem of Arithmetic. 

Lemma 4.2.1. If 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are positive integers such that (𝑎, 𝑏) = 1 and 𝑎|𝑏𝑐, 𝑡ℎ𝑒𝑛 𝑎|𝑐.   
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Proof. Because (𝑎, 𝑏) = 1, there are integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1. Multiplying both 

sides of this equation by 𝑐, we have 𝑎𝑐𝑥 + 𝑏𝑐𝑦 = 𝑐. By Theorem 2.2.1, 𝑎 divides 𝑎𝑐𝑥 + 𝑏𝑐𝑦, 

because this is a linear combination of 𝑎 and 𝑏𝑐, both of which are divisible by 𝑎. Hence, 𝑎|𝑐. □   

              The following consequence of this lemma will be needed in the proof of The 

Fundamental Theorem of Arithmetic.                                                                                    

Lemma 4.2.2. If 𝑝 divides the product 𝑎1𝑎2. . . 𝑎𝑛, where 𝑝 is a prime, and 𝑎1, 𝑎2, . . . , 𝑎𝑛𝑑 𝑎𝑛 are 

positive integers, then there is an integer 𝑖 with 1 ≤  𝑖 ≤  𝑛 such that 𝑝 divides 𝑎𝑖.   

Proof. We prove this result by induction. The case where 𝑛 = 1 is trivial. Assume that the result 

is true for 𝑛. Consider a product of 𝑛 + 1 integers: 𝑎1𝑎2. . . 𝑎𝑛+1, that is divisible by the prime 𝑝. 

We know that either (𝑝, 𝑎1𝑎2. . . 𝑎𝑛) = 1 or (𝑝, 𝑎1𝑎2. . . 𝑎𝑛) = 𝑝. If (𝑝, 𝑎1𝑎2. . . 𝑎𝑛) = 1, then by 

Lemma 4.2.1, 𝑝|𝑎𝑛+1. On the other hand, if 𝑝|𝑎1𝑎2. . . 𝑎𝑛 using the induction hypothesis, there is 

an integer 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 such that 𝑝|𝑎𝑖. Consequently, 𝑝|𝑎𝑖 for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑛 + 1. 

This proves the result.                                                                                                                  □ 

We now begin the proof of the Fundamental Theorem of Arithmetic. First, we will show 

that every positive integer greater than 1 can be written as the product of primes in at least one 

way. Then we will show that this product is unique up to the order of primes that appear.   

Proof. We use proof by contradiction. Assume that some positive integer cannot be written as 

the product of primes. Let 𝑛 be the smallest such integer (such an integer must exist, from the 

well-ordering property). If 𝑛 is prime, it is obviously the product of a set of primes, namely the 

one prime 𝑛. If 𝑛 is not a prime, let 𝑛 = 𝑎𝑏, with 1 < 𝑎 < 𝑛 and 1 < 𝑏 < 𝑛. Because 𝑎 and 𝑏 

are smaller than 𝑛, each of them is a product of primes. Then we conclude that 𝑛 is also a 

product of primes. This contradiction shows that every positive integer can be written as a 

product of primes.  
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We now finish the proof of the Fundamental Theorem of Arithmetic by showing that the 

factorization is unique.  

Suppose that there is an integer n that has two different factorizations into primes:   

𝑛 = 𝑝1 𝑝2. . . 𝑝𝑠 = 𝑞1 𝑞2. . . 𝑞𝑡 , where 𝑝1, 𝑝2, . . . , 𝑝𝑠, and 𝑞1, 𝑞2, . . . , 𝑞𝑡 are all primes. We will prove 

the claim by induction on the number of primes in the equation.  

              If 𝑛 is prime, then 𝑠 = 𝑡 = 1 and 𝑝1 = 𝑞1. The claim is true. Now we assume that 𝑛 is 

not a prime. Since 𝑝1 is a prime and 𝑝1|𝑞1𝑞2 … 𝑞𝑛, by lemma 4.2.2, 𝑝1 divides one of the primes 

in the product. We may change the order in the product and assume that 𝑝1 divides 𝑞1. Since 𝑞1 

is also a prime, we have 𝑝1 = 𝑞1. Cancelling the common factor 𝑝1 in the equation, we have a 

new equation 𝑝2 … . 𝑝𝑛 = 𝑞2 … . 𝑞𝑛. By the inductive assumption, the set of primes {𝑝2, … , 𝑝𝑠} =

{𝑞2, … , 𝑞𝑡} and the factorization is unique except the order.                                                         □ 

Example 4.2.1. The Factorization of 120 =  23 ⋅  3 ⋅ 5  

Image 4.2.1  

 

4.3 Least Common Multiple  

Definition 4.3.1. The least common multiple of two nonzero integers a and b is the smallest 

positive integer that is divisible by a and b, written [𝑎, 𝑏]. 

In the next example, we write [𝑎, 𝑏] = 𝑐, where 𝑎 and 𝑏 are numbers and 𝑐 is their LCM. 

Example 4.3.1. We have the following least common multiples: [15, 21] = 105, [24, 36] =

72, [2, 20] = 20, and [7, 11] = 77. 
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The least common multiple of two positive integers a and b is the product divided by the 

greatest common divisor: 

[𝑎, 𝑏] =
𝑎𝑏

𝑔𝑐𝑑(𝑎, 𝑏)
 

 

Example 4.3.2. 

[15, 21] =
15⋅21

gcd(15,21)
=  105,    

[2, 20] =
2⋅20

gcd(2,20)
 =  20   

[7, 11] =
7∗11

gcd(7,11)
=  77  

[24, 36] =  
24⋅36

gcd(24,36)
= 72  
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Chapter 5 Factorization and Division Criteria 

5.1 Factorization and Division Criteria in K-12 

 Students are taught how to factor an integer in elementary school and exposed to prime 

factorization in middle school through high school. In this chapter, we will present some division 

criteria which could be introduced to students in middle school or high school. 

5.2 Division Criteria  

 In Chapter 2, by the Division Theorem, an integer m is divisible by a positive integer n if 

the remainder is zero and we have 𝑚 = 𝑛𝑞 for an integer 𝑞. In this section, we will provide some 

division criteria which can be understood by high school students. 

Lemma 5.2.1. Let 𝑎, 𝑏 and ℎ > 0 be integers. If 𝑎 = ℎ𝑔1 + 𝑟1 and 𝑏 = ℎ𝑔2 + 𝑟2 where 

𝑔1, 𝑔2, 𝑟1 𝑎𝑛𝑑 𝑟2 are integers, then the remainder of 𝑎 + 𝑏 divided by h is equal to the remainder 

of 𝑟1 + 𝑟2 divided by h.  

Proof. This is a direct consequence of the equation 𝑎 + 𝑏 = ℎ(𝑔1 + 𝑔2) + (𝑟1 + 𝑟2), and that 

ℎ(𝑔1 + 𝑔2) is divisible by ℎ.                                                                                                        □ 

       An integer a can be expanded as a sum with base 10 as follows: 

                                  𝑎 = 𝑟𝑛10𝑛  +  𝑟𝑛−110𝑛−1  + ⋯ + 𝑟110 +  𝑟0, 

where 0 ≤ 𝑟𝑖 < 10, 𝑖 = 0, 1, 2, … , 𝑛 and 𝑟𝑛 ≠ 0.  

Divisibility Rules for 2 

Any integer 𝑚 can be written as 𝑚 = 2𝑞 + 𝑟, where 𝑞 and 𝑟 are integers and 𝑟 = 0 or 1.  

If 𝑟 = 0, then we say that 𝑚 is even and 𝑟 =1, we say that 𝑚 is odd. Since 𝑚 = 10𝑛 + 𝑎, where 

𝑛 and 𝑎 are integers and 𝑎 =  0, 1, 2, … , 9, every integer that has the digits 0, 2, 4, 6, or 8 as its 
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unit digit can be divided by two (indicating that the number is even). For illustration: 456 ends in 

6 so it can be divided by 2; 

357 ends in 7 and cannot be divided by 2; 

280 ends in 0 and can be divided by 2; 

91 ends in 1 and cannot be divided by 2. 

Divisibility Rule for 3 

We can get the rule by the following calculation  

10 = 9 + 1 = 3(3) + 1 = 3𝑎1 + 1, 

                                                  102= (9 + 1)2 = 3𝑎2 + 1, 

                                                103 = (9 + 1)3 = 3𝑎3 + 1, 

where 𝑎1, 𝑎2 and 𝑎3 are integers. By the binomial formula  

                                        (𝑎 + 𝑏)𝑛 = 𝑎𝑛 + (
𝑛
1

)  𝑎𝑛−1𝑏 + ⋯ + (
𝑛

𝑛 − 1
) 𝑎𝑏𝑛−1 + 𝑏𝑛, 

we have  

10𝑛 = (9 + 1)𝑛 = 3𝑎𝑛 + 1, 

where 𝑎𝑛 is an integer. So divided by 3, 𝑟𝑛10𝑛 has a remainder 𝑟𝑛. By Lemma 5.2.1, divided by 

3, 𝑚 = 𝑟𝑛10𝑛 + 𝑟𝑛−110𝑛−1 + ⋯ + 𝑟110 + 𝑟0 has a remainder 𝑟0 + 𝑟1 + 𝑟2 + ⋯ + 𝑟𝑛. 

Conclusion: if the sum of its digits can be divided by 3, then the number can also be 

divided by 3. For instance: 

624 can be divided by 3: 6 + 2 + 4 = 12 and 12 can be divided by 3; 

431 cannot be divided by 3: 4 + 3 + 1 = 8, and 8 cannot be divided by 3; 
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91 cannot be divided by 3: 9 + 1 = 10 and 10 cannot be divided by 3; 

4671 can be divided by 3: 4 + 6 + 7 + 1 = 18 and 18 can be divided by 3. 

Divisibility Rule for 4 

An integer is divisible by 4 if and only if the number represented by its last two digits is 

divisible by 4.  

Proof. Any integer can be written as: 𝑎 = 100𝑞 + 𝑟, 0 ≤  𝑟 < 100.  Since 4|100, 4|𝑎 if 

and only if 4|𝑟.                                                                                                                    □                                                                

For example, 4|562396 since 4|96. 4 is not a factor of 562398 since 98 does not have a factor 

4. 

 

Divisibility Rule for 5 

       We can write any integer 𝑎 = 10𝑞 + 𝑟 for some integers 𝑞 and 0 ≤ 𝑟 < 10. If 𝑎 is divisible 

by 5 then 𝑟 is 0 or 5. Thus, a particular number can be divided by 5 if its unit digit is 0 or 5. For 

illustration: 

380 (it ends in 0) can be divided by 5; 

264 (it ends in 4) cannot be divided by 5; 

2175 (it ends in 5) can be divided by 5; 

403 (it ends in 3) cannot be divided by 5. 

Divisibility Rule by 6 

An integer is divisible by 6 if and only if it is even and divisible by 3.  

Proof. Since 𝑔𝑐𝑑(2, 3) = 1, an integer 𝑎 is divisible by 6 if and only if it is divisible by 2 and 3.  
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                                                                                                                                                     □ 

                   24 is divisible by 2 and 3, so it is also divisible by 6. 

       16 is divisible by 2 but not 3, so 6 does not divide 16. 

Divisibility Rule by 8 

An integer is divisible by 8 if and only if the number represented by its last three digits is 

divisible by 8.  

Proof.  By division theorem, an integer 𝑎 can be written as 

𝑎 = 1000𝑞 + 𝑟, where 0 ≤  𝑟 <  1000.  Since  8|1000,  8|𝑎 if and only if 8|𝑟.            □ 

           For example, 562396 is not divisible by 8 since 396 is not divisible by 8. 562392 

Is divisible by 8 since 392 has a factor 8.  

Divisibility Rules for 9 

We have 10 = 9 + 1 

102 = (9 + 1)2 = 92 + 2(9) + 1 = 9𝑎 + 1 

103 = 9𝑏 + 1, 𝑎, 𝑏 ∈ 𝑁 

Similarly, by the binomial formula,  

(𝑥 + 𝑦)𝑛 = 𝑥𝑛 + (
𝑛
1

) 𝑥𝑛−1𝑦 + ⋯ + (
𝑛

𝑛 − 1
) 𝑥𝑦𝑛−1 + 𝑦𝑛, 

where 𝑛 ∈ ℕ, we have 10𝑛 = (9 + 1)𝑛 = 9𝑘 + 1, 𝑘 ∈ ℕ. This formula shows that divided by 9, 

𝑟𝑛10𝑛 has the least nonnegative remainder  𝑟𝑛. We can write a positive integer m in base 10: 

𝑚 = 𝑟𝑛10𝑛 + 𝑟𝑛−110𝑛−1 + ⋯ + 𝑟110 + 𝑟0, where 0 ≤ 𝑟𝑖 ≤ 9, and 𝑟𝑛 > 0 , 𝑖 = 

0, 1, 2, … , 𝑛. By Lemma 5.2.1, 𝑚 is divisible by 9 if 𝑟0 + 𝑟1 + ⋯ + 𝑟𝑛 is divisble by 9. 
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The number can be divided by 9 if the sum of its digits can be divided by 9. For illustration:  

2079: 2 + 0 + 7 + 9 = 18, and 18 can be divided by 9, so 2079 can be divided by 9; 

275: 2 + 7 + 5 = 14, and 14 cannot be divided by 9 so 275 cannot be divided by 9; 

              9945: 9 + 9 + 4 + 5 = 27, and 27 can be divided by 9 so 9945 can be divided by 9; 

7824: 7 + 8 + 2 + 4 = 21 and 21 cannot be divided by 9 so 7824 can be divided by 9. 

Divisibility Rule for 11 

We need the following formulas in this part with 1 being a negative remainder. 

10 = 11 + (−1) 

102 = 112 + 2(−1)(11) + (−1)2 = 11𝑎1 + 1 

103 = 11𝑎2 + (−1)3 = 11𝑎2 + (−1) 

In general, for 𝑛 ∈ 𝑁, 
10𝑛 = 11𝑎𝑛 + (−1)𝑛 

So divided by 11, 10𝑛 has a remainder (−1)𝑛 and 𝑟𝑛10𝑛 has a remainder 𝑟𝑛(−1)𝑛. By Lemma 

5.2.1, divided by 11,  

𝑚 = 𝑟𝑛10𝑛 + 𝑟𝑛−110𝑛−1 + ⋯ + 𝑟110 + 𝑟0 

has a remainder which is equal to the remainder of 𝑟0 − 𝑟1 + 𝑟2 − ⋯ + (−1)𝑛𝑟𝑛.  

Conclusion: if the sum of alternative digits of a number is divisible by 11, then that 

number is divisible by 11. To check whether 2143 is divisible by 11, we compute the sum of its 

alternate digits: 3 − 4 + 1 − 2 = −2, which is not divisible by 11, so we conclude that 2143 is 

not divisible by 11. To check whether 1,331 is divisible by 11, we follow the same steps.  1 −

3 + 3 − 1 = 0 which is divisible by 11. 

5.3 Fermat Factorization Method    



28 

 

 

Pierre de Fermat (1607-1665) was a French mathematician who made significant 

contributions to analytic geometry, calculus, number theory and probability theory. The Fermat 

factorization method is a way to write an odd positive integer as a difference of two squares as 

follows.  

Lemma 5.3.1. If 𝑛 is an odd positive integer, then 𝑛 is the differences of squares of two integers.   

Proof. Let 𝑛 be an odd positive integer and let 𝑛 = 𝑎𝑏 be a factorization of 𝑛 into two positive 

integers. Then 𝑛 can be written as the difference of two squares 𝑛 = 𝑎𝑏 = 𝑠2 − 𝑡2, where 𝑠 =

𝑎 + 𝑏

2
 and 𝑡 =

𝑎 − 𝑏

2
 are both integers because 𝑎 and 𝑏 are both odd.                                            □ 

Example 5.3.1. We factor 6077 using the method of Fermat factorization. Because 77 <

√6077 < 78, we look for a perfect square in the sequence 782 –  6077 = 7 

792 − 6077 = 164 

  802 − 6077 = 323 

  812 − 6077 = 484 = 222. 

 Because 6077 = 812 − 222, we see that 6077 = (81 − 22)(81 + 22) = 59 ∙ 103.   

The integers 𝐹𝑛 = 22𝑛
+ 1 are called the Fermat numbers. Fermat conjectured that these 

integers are all primes. Indeed, the first few are primes, namely, 𝐹0 = 3, 𝐹1 = 5, 𝐹2 = 17, 𝐹3 =

257, and 𝐹4 = 65,537. Unfortunately, 𝐹5 = 225
+ 1 is composite, as we will now demonstrate.  

Example 5.3.2. The Fermat number 𝐹5 = 225
+ 1 is divisible by 641. We can show that 641|𝐹5 

without performing the division, using several not-so-obvious observations. Note that   

641 = 5 ⋅ 27 + 1 = 24 + 54.  

Hence,  

225
+ 1 = 232 + 1 = 24 ⋅ 228 + 1 = (641 − 54 )228 + 1 

=  641 ⋅ 228 − (5 ⋅ 27)4 + 1 = 641 ⋅ 228 − (641 − 1)4 + 1 
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= 641(228 − 6413 + 4 ⋅ 6412 − 6 ⋅ 641 + 4). 

Therefore, we see that 641|𝐹5.   

 The following result is a valuable aid in the factorization of Fermat numbers which was 

discovered by another French mathematician Edouard Lucas. 

Theorem 5.3.1. Every prime divisor of the Fermat number 𝐹𝑛 = 22𝑛
+ 1 can be expressed in the 

form 2𝑛+2𝑘 +  1.  

Example 5.3.3. From Theorem 5.3.1., we know that every prime divisor of 𝐹3 = 223 
+ 1 = 257 

must be of the form 25 ∙ 𝑘 + 1 = 32 ∙ 𝑘 + 1. Because there are no primes of this form which is 

greater than 16 and less than 17. we can conclude that 𝐹3 = 257 is prime.    

Example 5.3.4. When factoring 𝐹6 = 226
+ 1, we use Theorem 5.3.1 to see that all of its prime 

factors are of the form 28 ∙ 𝑘 + 1 = 256 ∙ 𝑘 + 1. Hence, we need only perform trial divisions of 

𝐹6 by primes of the form 256 ∙ 𝑘 + 1 that do not exceed √𝐹6. After considerable computation, 

we find that a prime divisor is obtained with 𝑘 = 1071, that is, 274,177 = (256 ∙ 1071 + 1)|𝐹6. 

                                                Conclusion 

               Illinois state adopted Common and Core Standards in Math on June 24, 2010 which 

 

 emphasize reasoning skills. Learning elementary number theory could develop students’ ability  

 

to reason abstractly and rigorously. Number theory has many applications such as coding  

 

theory, computing, cryptography, digital information, and physics. In 1974, Dr.Donald Knuth  

 

(a mathematician and famous computer scientist) said "...virtually every theorem in elementary  

 

number theory arises in a natural, motivated way in connection with the problem of making  

 

computers do high-speed numerical calculations.” Teaching elementary number theory and  

 

discussing its applications in daily life could motivate students’ interests in math and science.  
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