Governors State University

OPUS Open Portal to University Scholarship

All Capstone Projects

Student Capstone Projects

Fall 2022

Airline Search Engine Project

Arun Kailasa

Follow this and additional works at: https://opus.govst.edu/capstones

Recommended Citation

Kailasa, Arun, "Airline Search Engine Project" (2022). *All Capstone Projects*. 568. https://opus.govst.edu/capstones/568

For more information about the academic degree, extended learning, and certificate programs of Governors State University, go to http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Computer Science Department

This Capstone Project is brought to you for free and open access by the Student Capstone Projects at OPUS Open Portal to University Scholarship. It has been accepted for inclusion in All Capstone Projects by an authorized administrator of OPUS Open Portal to University Scholarship. For more information, please contact opus@govst.edu.

AIRLINE SEARCH ENGINE PROJECT

By

Arun Kailasa

B. Tech, Vaagdevi College of Engineering, 2020

GRADUATE CAPSTONE SEMINAR PROJECT

Submitted in partial fulfillment of the requirements

For the Degree of Master of Science,

With a Major in Computer Science

Governors State University University Park, IL 60484

ABSTRACT

The Airline Search Engine Project is a tool that helps anyone to find the facts/data related to Airlines/Airports. For this project, the raw data set is available in the .dat format. We are going to use this data, which can be downloaded from [1].

The tool may also do some first cleaning of the data if needed for forming dimensional data, the cleaning process such as data value unification, data type and size unification, deduplication, dropping columns, and correcting some known errors.

The data will be processed with the help of languages like Python and Spark. By storing the data, we can distribute storage systems such as Hadoop and Amazon S3. The Integrated Development Environment (IDE) used in this project would be editors such as Google Colab and PyCharm.

This tool can be run as a job in different clusters such as EMR (Elastic MapReduce), HDInsight, Cloudera, and Databricks. It can solve/derive data by analyzing terra bytes of raw data into useful information. We can create reports out of it, which Data Analysts, Data Scientists, and businesspeople can use.

Table of Contents

1	Pr	oject Description	3
	1.1	Appendix A:	3
	1.2	Appendix B:	 3
	1.3	Appendix C:	2
2	Ar	chitecture and flow of the Data Pipeline	4
3		ols and Technologies	
4	Pr	oject Structure	5
5		oject folder Hierarchy	
6	Ut	ility Code	7
7		de for creating the Spark session	
8		ansformation and Cleaning	
9		omplete Project Code:	
1	0	Project Output Screenshots	11
	10.1	Find a list of Airports operating in the Country X	11
	10.2	Find the list of Airlines having X stops	11
	10.3	List of Airlines operating with codeshare	12
	10.4	Find the list of Active Airlines in the United States	12
	10.5	Which country (or) territory has the highest number of Airports	13
	10.6	The top K cities with most Incoming Airlines	13
	10.7	The top K cities with most Outgoing Airlines	14
	10.8	Trip that connects two cities X and Y	14
	10.9	Trip that connects X and Y with less than Z stops	15
	10.10	All the cities reachable within d hops of a city	15
	10.11	Find list of Airports operating in the Country X	16
	10.12	Find the list of Airlines having X stops	16
	10.13	List of Airlines operating with code share	17
	10.14	Find the list of Active Airlines in the United States	17

1	0.15	Which country (or) territory has the highest number of Airports	18
10	0.16	The top K cities with most incoming Airlines	. 18
1	0.17	The top K cities with most outgoing Airlines	. 19
1	0.18	Trip that connects two cities X and Y	. 19
10	0.19	Trip that connects X and Y with less than Z stops	20
10	0.20	All the cities reachable within d hops of a city	20
11	A	AWS Output Screenshot	. 21
12	A	Acknowledgement	. 23
13	I	References:	. 23

1 Project Description

This tool is going to process various raw data sets which you can find in **Appendix A** and from this raw data we can derive some useful facts which you can find in **Appendix B**. The tool will process raw data and initially create various dimensional data models such as Airports, Airlines, Routes, Planes, and Countries tables. The schema of those tables can be found in **Appendix C**.

1.1 Appendix A:

The raw data sets are

- 1) Airport.dat Which contains information related to Airports such as Airport id, Airport Name, etc.
- 2) Airlines.dat Which contains information related to Airlines such as Airline id, Airline name, etc et al. [5].
- 3) Routes.dat Which contains information related to routes such as Source Airport, Destination Airport.
- 4) Plane Which contains information related to plane such as Plane name, etc.
- 5) Country Which contains information related to Country name, iso code et al. [5].

1.2 Appendix B:

- a. Find list of Airports operating in the Country X.
- b. Find the list of Airlines having X stops.
- c. List of Airlines operating with code share.
- d. Find the list of Active Airlines in the United States.
 - i. Airline aggregation:
- e. Which Country (or) Territory has the highest number of Airports.
- f. The top K cities with most Incoming/Outgoing Airlines.
 - i. Trip recommendation:
- g. Define a trip as a sequence of connected routes. Find a trip that connects two cities X and Y (reachability).
- h. Find a trip that connects X and Y with less than Z stops (constrained reachability).
- i. Find all the cities reachable within d hops of a city (bounded reachability).
- a. Fast Transitive closure/connected component implemented in parallel/distributed algorithms.

1.3 Appendix C:

Table name	Airports
airport_id	bigint
Name	string
city	string
country	String
iata	String
icao	String
latitude	Double
longitude	Double
altitude	Bigint
timezone	Double
dst	String
tz_database	String
type	String
source	String

Table name	Airlines
Airlineid	bigint
Name	string
Alias	String
Iata	String
Icao	String
Callsign	String
Country	String
active	String

Table Name	Routes
Airline	string
Airlineid	String
Source_airport	String
Source_airport_id	String
Destination_airport	string
Destination_airportid	string
Codeshare	string
Stops	Bigint
Equipment	string

Table Name	Planes
Name	String
Iata	String
Icao	string

Table Name	Countries
Name	String
Iso_code	String
Dafif_code	String

2 Architecture and flow of the Data Pipeline

The given data set will be uploaded to either the Amazon S3 bucket et al. [4,6] or can be uploaded to Hadoop attributed filesystem. The uploaded data will be processed with the help of Apache Spark engine et al. [3]. The Apache Spark engine mostly will be cluster like Amazon Elastic Map Reduce (EMR) service or locally installed Spark. Once the data is processed, we can store the data again in another Amazon S3 bucket or it can be stored in the HDFS also. The output data can be viewed with the help of various tools such as Apache Superset, Tableau, Presto query engine, Amazon Athena et al. [6] or it can be created as another Hive table et al. [3].



Figure 1: Architecture and flow of the Data Pipeline [2].

3 Tools and Technologies

Google Colab, Spark, Python, AWS, PyCharm, HDFS, AWS Resources such as S3 bucket, Identity Access Management (IAM), AWS Glue Data Catalog, AWS Glue Crawler, AWS Athena, SQL.

4 Project Structure

The Airline Search Engine Project is developed with Integrated Development Environment (IDE) such as PyCharm et al. [8] and by installing necessary language binaries like PySpark and Spark et al. [3,11].

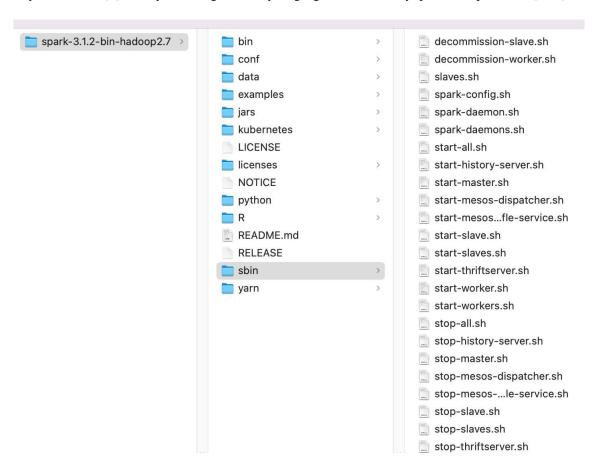


Figure 2: PySpark version 3.1.2 and Spark version 3.1.2.

The pip list command shows the PySpark version used in this project. PySpark version 3.1.2 and Spark version 3.1.2.

```
Package Version
-----
pip 21.1.2
py4j 0.10.9
pyspark 3.1.2
setuptools 57.0.0
wheel 0.36.2
WARNING: You are using pip version 21.1.2; howe
```

Figure 3: pip list command showing PySpark Version.

5 Project folder Hierarchy

A separate project is created for this, and it includes a separate virtual environment to install the necessary project dependency modules like Pandas et al. [10], NumPy, etc. The folder structure includes a separate folder for data loading/reading and some util Spark code will be developed and developed folder like the util folder.

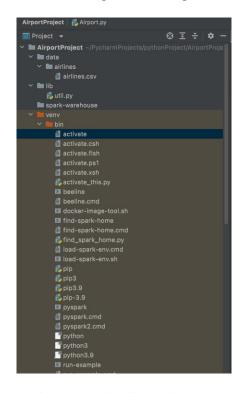


Figure 4: Project folder Hierarchy

6 Utility Code

Utility code was developed to read the Spark session configuration and to set the Spark configuration at run time as well. The load_df utility was developed to read the data. You can find the code in the belowscreenshot.

```
import confignaser
from pyspark import SparkConf

def get_spark_app_config():
    conf = SparkConf()
    config = confignaser.ConfigParser()
    config.read("spark.conf")
    for (key, val) in config.items("SPARK_APP_CONFIGS"):
        conf.set(key,val)
    return conf

def load_df(spark, data_file):
    # You are telling header is there in this file
    # You assume the data type by yourself by specifying inferSchema

# You assume the data type by yourself by specifying inferSchema

return spark.read.option("header", "False").option("inferSchema", "true").csv(data_file)
```

Figure 5: Utility Code

7 Code for creating the Spark session

```
import sys
from pyspark import SparkConf_SparkContext
from pyspark.sql import SparkSession

from lib.util import get_spark_app_config_load_df
spark_conf = get_spark_app_config()
spark = SparkSession.builder.config(conf=spark_conf).getOrCreate()
```

Figure 6: Code for creating the Spark session

8 Transformation and Cleaning

Doing some transformation and cleaning work like replace strings like " \N " and "- "with na and transformation by replacing all null values with strings like na. You can find the output in the screen below after this transformation and cleaning.

activel	country	callsinnl	icanL	iatali	aliasl:	name	irlineid.
						Private flight	
						135 Airways	
						1Time Airline	
N	United Kingdom	na	WYT	na	na	2 Sqn No 1 Elemen	4 2
N	Russia	na	TFU	na	na	213 Flight Unit	5
N	Russia	CHKALOVSK-AVIA	CHD	na	na	223 Flight Unit S	6 2
N	Russia	CARGO UNIT	TTF	na	na	224th Flight Unit	7
N	United Kingdom	CLOUD RUNNER	TWF	na	na	247 Jet Ltd	8
N I	United States	SECUREX	SEC	na	na	3D Aviation	9
ΥI	United States	MILE-AIR	MLA	Q5	na	40-Mile Air	10
N	Thailand	QUARTET	QRT	na	na	4D Air	11
						611897 Alberta Li	
ΥĮ	Australia	ANSETT	AAA	AN	na	Ansett Australia	13
ΥĮ	Singapore	na	na	1B	na	Abacus International	14 AI
	-					Abelag Aviation	
						Army Air Corps	
N						Aero Aviation Cen	
						Aero Servicios Ej	
						Aero Biniza	
N						Aero Albatros +	

Figure 7: Transformation and Cleaning

9 Complete Project Code:

```
import sys
from pyspark import
SparkConf, SparkContextfrom pyspark.sql
import SparkSession
from lib.util import
get_spark_app_config, load_dfspark_conf =
get_spark_app_config()
#print(spark_conf.toDebugString())
spark =
SparkSession.builder.config(conf=spark_conf).getOrCreate()#
airline module
airlines_load_df =
load_df(spark, "data/airlines/airlines.csv")# Changing to
new column names
airlines_column_name_list =
["airlineid", "name", "alias", "iata", "icao", "callsign", "country", "active"]
airlines_raw_df = airlines_load_df.toDF(*airlines_column_name_list)
airlines_df = airlines_raw_df.replace('\N', "na").replace("-
```

Figure 8: Project Code

```
# airports module
airports load_df = load_df(spark, "data/airports/airports.csv")
airports_column_name_list =
["airportid", "name", "city", "country", "iata", "icao", "latitude", "longitude", "al
titude", "timezone", "dst", "tidatabase", "type", "source"]
airports_raw_df = airports_load_df.toDF(*airports_column_name_list)
airports_df = airports_raw_df.replace('\\n', "na").replace("-
", "na").fillna("na")
airports_df.write.mode("overwrite").option("header", True).csv("output/airport
s,")
airports_df.createTempView("airports")
# countries_load_df = load_df(spark, "data/countries/countries.csv")
countries_column_name_list = ("name", "isocode", "dafifcode")
countries_raw_df = countries_load_df.toDF(*countries_column_name_list)
countries_df = countries_raw_df.replace('\\n', "na").replace("-
", "na").fillna("na")
countries_df.write.mode("overwrite").option("header", True).csv("output/countries/")

# planes_module
planes_load_df = load_df(spark, "data/planes/planes.csv")
planes_df.createTempView("countries")

# planes_module
planes_load_df = load_df(spark, "data/planes/planes.csv")
planes_df.write.mode("overwrite").option("header", True).csv("output/planes/")
planes_df.write.mode("overwrite").option("header", True).csv("output/planes/")
planes_df.vrite.mode("overwrite").option("header", True).csv("output/planes/")
planes_df.createTempView("planes")

# routes_module
routes_load_df = load_df(spark, "data/routes/routes.csv")
routes_column_name_list =
["airline", "silrineid", "sourceairport", "sourceairportid", "destinationairport"
routes_df.createTempView("planes")

# routes_module
routes_load_df = load_df(spark, "data/routes/routes.csv")
routes_df.createTempView("planes")

# routes_raw_df = routes_load_df.toDF(routes_column_name_list)
routes_df = routes_load_df.toDF(routes_column_name_list)
routes_df = routes_load_df.voDF(routes_column_name_list)
routes_df = routes_load_df.voDF(routes_column_name_list)
routes_df = routes_load_df.voDF(routes_column_name_list)
routes_df = routes_raw_df.replace('\\\\\\\\\\\\\\\\\\\\\\\\\\\
```

Figure 9: Complete Project Code

```
# # The top k cities with most incoming airlines
spark.sql("""select * from (select airports.airportid, airports.name,
airports.city, airports.country, tb2.incoming_flight_count from
airports inner join (select count(*) as incoming_flight_count,
destinationairportid = tb2.destinationairportid) otb order by
otb.incoming_flight_count desc""").show(100)

# # The top k cities with most outgoing airlines
spark.sql("""select * from (select airports.airportid, airports.name,
airports.city, airports.country, tb2.outgoing_flight_count from
airports inner join (select count(*) as outgoing_flight_count,
sourceairportid from routes group by sourceairportid) tb2
on airports.airportid = tb2.sourceairportid) otb order by
otb.outgoing_flight_count desc""").show(100)

#Trip that connects two cities X and Y
spark.sql("""select * from routes where sourceairportid = '2613' and
destinationairportid='2531' """).show(100)

spark.sql("""select * from routes where sourceairportid = '2613' and
destinationairportid='2531' and stops < 1 """).show(100)

spark.sql("""select destinationairport from routes where stops = 1
""").show(100)</pre>
```

Figure 10: Complete Project Code

```
import configparser
from pyspark import SparkConf
def get_spark_app_config():
    conf = SparkConf()
    config = configparser.ConfigParser()
    config.read("spark.conf")
    for (key, val) in config.items("SPARK_APP_CONFIGS"):
        conf.set(key,val)
    return conf

def load_df(spark, data_file):
    # You are telling header is there in this file
    # You assume the data type by yourself by specifying inferSchema
    return spark.read.option("header", "False").option("inferSchema",
"true").csv(data file)
```

Figure 11: Spark Session Configuration Code

10 Project Output Screenshots

10.1 Find a list of Airports operating in the Country X

spark.sql("select *, count(*) over () as count from airports where country = 'Greenland''').show(100)

Output:

airporti	d name	city country iat	ta icao	latitude	longitude al	.titude tim	ezone dst		count
	-+ 7 Narsarsuaq Airport	Narssarssuag Greenland UA		61.1604995728	-45.4259986877	112	+ -3 E		+ 56
	8 Godthaab / Nuuk A	Godthaab Greenland GO	OH BGGH	64.19090271	-51.6781005859	283	-3 E	America/Godthab airport OurAirports	561
	9 Kangerlussuaq Air	Sondrestrom Greenland SF	FJ BGSF	67.0122218992	-50.7116031647	165	-3 E	America/Godthab airport OurAirports	56
1	0 Thule Air Base	Thule Greenland Th	HU BGTL	76.5311965942	-68.7032012939	251		America/Thule airport OurAirports	56
399	5 Ilulissat Airport	Ilulissat Greenland JA	AV BGJN	69.2432022095	-51.0570983887	951		America/Godthab airport OurAirports	561
399	6 Qasigiannguit Hel	Qasigiannguit Greenland JO	CH BGCH	68.822815547	-51.1734473705	70		America/Godthab airport OurAirports	561
399	7 Aasiaat Airport	Aasiaat Greenland JE	EG BGAA	68.7218017578	-52.7846984863	74	-3 E	America/Godthab airport OurAirports	56
1 5/3	8 Alluiteup Paa Wal	Alluiteum PaalGmaenlandl II	IIII BCADI	40 (4445)	-45 540171	F41	-31 E	Amenica/GodthahlainnontlOunAinnontsl	561

Figure 10.1: Output for list of Airports operating in the Country X ('GREENLAND')

10.2 Find the list of Airlines having X stops

spark.sql("select * from routes where stops > 0").show(100)

ir					tionairport destinat 				
	5T	1623	YRT	132	 YEK	50	na	1	ATR
	AC	330	ABJ	253	BRU	302	na	1	333
	AC	330	YVR	156	YBL	30	na	1	BEH
	CUI	1936	FC0	1555	HAV	1909	na	1	767
	FL	1316	HOU	3566	SAT	3621	na	1	735
	FL	1316	MCO	3878	HOU	3566	na	1	73W
	FL	1316	MCO	3878	ORF	3611	na	1	717
	SK	4319	ARN	737	GEV	715	na	1	ATP
	WN	4547	BOS	3448	MCO	3878	na	1	73W
	WN	4547	MCO	3878	BOS	3448	na	1	73W
	WN	4547	MCOI	3878	CAKI	4112	nal	11	73C 73W

Figure 10.2: Output for list of Airlines having X stops

10.3 List of Airlines operating with codeshare

spark.sql("select *, count(*) over() as count from routes where codeshare != 'na' ").show(100)

Output:

+	+						+	+-	+
ai	rline ai	rlineid sour	ceairport source	airportid destina	ationairport destinati	onairportid codes	share sto	ops	euipment count
+									+
1	2P	897	GES	2402	MNL	2397			320 14597
1	2P	897	MNL	2397	GES	2402			320 14597
1	4M	3201	DFW	3670	EZE	3988			777 14597
1		3201	EZE	3988	DFW	3670			777 14597
1		3201	EZE	3988	JFK	3797			777 14597
1		3201	JFK	3797	EZE	3988			777 14597
1	5N	503	ARH	4362	CSH	6110			AN4 14597
1	5N	503	ARH	4362	MMK	2949			AN4 14597
1	5N	503	ARH	4362	USK	4369			AN4 14597
1	5N	503	CSH	6110	ARH	4362			AN4 14597
1	5N	503	MMK	2949	ARH	4362			AN4 14597

Figure 10.3: Output for list of Airlines operating with codeshare

10.4 Find the list of Active Airlines in the United States

spark.sql("select *, count(*) over() as count from airlines where country = 'United States' and active = 'Y'').show(100)

air	lineid	name	alias i	ata :	icao	callsign		country	active c	ount
	+-									
	10	40-Mile Air	na	Q5	MLA	MILE-AIR	United	States	ΥĮ	156
	22	Aloha Airlines	na	AQI	AAH	ALOHA	United	States	ΥĮ	156
	24	American Airlines	na	AA	AAL	AMERICAN	United	States	ΥĮ	156
	35	Allegiant Air	na	G4	AAY	ALLEGIANT	United	States	ΥĮ	156
	109 A	laska Central Ex	na	KO	AER	ACE AIR	United	States	ΥĮ	156
	149	Air Cargo Carriers	na	2Q	SNC	NIGHT CARGO	United	States	ΥĮ	156
	210 A	irlift Internati	na	na	AIR	AIRLIFT	United	States	ΥĮ	156
	281 A	merica West Airl	na	HP	AWE	CACTUS	United	States	ΥĮ	156
	282	Air Wisconsin	na	ZW	AWI	AIR WISCONSIN	United	States	ΥĮ	156
	287 A	llegheny Commute	na	na	AL0	ALLEGHENY	United	States	ΥĮ	156
	295	Air Sunshine	na	na	RSI	AIR SUNSHINE	United	States	ΥI	156

Figure 10.4: Output for list of active Airlines in the United States

10.5 Which country (or) territory has the highest number of Airports

spark.sql("select count(*) as cnt, country from airports group by country order by cnt desc").show(20)

Output:

Figure 10.5: Output for the countries with highest number of Airports

10.6 The top K cities with most Incoming Airlines

spark.sql("""select * from (select airports.airportid, airports.name, airports.city,airports.country, tb2.incoming_flight_count from airports inner join (select count (*) as incoming_flight_count, destinationairportid from routesgroup by destinationairportid) tb2 on airports.airportid = tb2.destinationairportid) otb order by otb.incoming_flight_countdesc""").show(100)

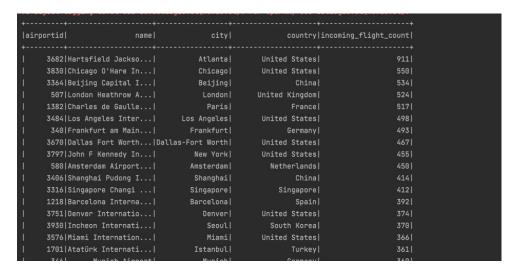


Figure 10.6: Output for the top cities with most incoming Airlines

10.7 The top K cities with most Outgoing Airlines

spark.sql("""select * from (select airports.airportid, airports.name, airports.city,airports.country, tb2.outgoing_flight_count from airports inner join (select count (*) as outgoing_flight_count, sourceairportid from routes groupby sourceairportid) tb2 on airports.airportid = tb2.sourceairportid) otb order by otb.outgoing_flight_count desc""").show(100)

Output:

+	+	+		+
airp	ortid name	city	country outgoing	g_flight_count
+	+	+		+
	3682 Hartsfield Jackso	Atlanta	United States	915
	3830 Chicago O'Hare In	Chicago	United States	558
	3364 Beijing Capital I	Beijing	China	535
	507 London Heathrow A	London	United Kingdom	527
	1382 Charles de Gaulle	Paris	France	524
	340 Frankfurt am Main	Frankfurt	Germany	497
	3484 Los Angeles Inter	Los Angeles	United States	492
	3670 Dallas Fort Worth Dal	las-Fort Worth	United States	469
	3797 John F Kennedy In	New York	United States	456
	580 Amsterdam Airport	Amsterdam	Netherlands	453
	3406 Shanghai Pudong I	Shanghai	China	411
	3316 Singapore Changi	Singapore	Singapore	408
	1218 Barcelona Interna	Barcelona	Spain	391

Figure 10.7: Output for top cities with most outgoing Airlines

10.8 Trip that connects two cities X and Y

spark.sql("""select * from routes where sourceairportid = '2613' and destinationairportid='2531' """).show(100)

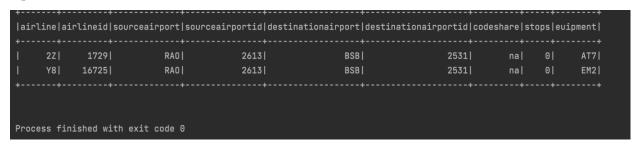


Figure 10.8: Output for trip that connects two cities X and Y

10.9 Trip that connects X and Y with less than Z stops

spark.sql("""select * from routes where sourceairportid = '2613' and destinationairportid='2531' and stops < 1 """).show(100)

Output:

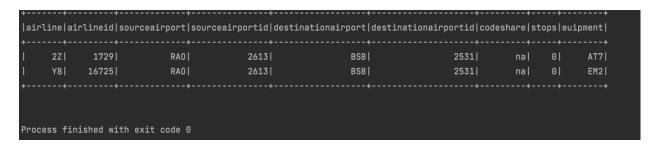


Figure 10.9: Output for trip that connects X and Y with less than Z stops

10.10 All the cities reachable within d hops of a city

spark.sql("""select destinationairport from routes where stops = 1 """).show(100)

Figure 10.10: Output for all the cities reachable within d hops of a city

10.11 Find list of Airports operating in the Country X

spark.sql("select *, count(*) over () as count from airports where country = 'Greenland''').show(100)

Output:

irportid	name		iata icao	latitude	longitude al				tzdatabase type source c	
	arsarsuaq Airport	Narssarssuaq Greenland		61.1604995728	-45.4259986877	112	-3		America/Godthab airport OurAirports	
8 God	thaab / Nuuk A	Godthaab Greenland	GOH BGGH	64.19090271	-51.6781005859	283		Εl	America/Godthab airport OurAirports	56
9 Kan	gerlussuaq Air	Sondrestrom Greenland	SFJ BGSF	67.0122218992	-50.7116031647	165			America/Godthab airport OurAirports	56
10	Thule Air Base	Thule Greenland	THU BGTL	76.5311965942	-68.7032012939	251	-4	Εļ	America/Thule airport OurAirports	56
3995	Ilulissat Airport	Ilulissat Greenland	JAV BGJN	69.2432022095	-51.0570983887	95		Εl	America/Godthab airport OurAirports	56
3996 Qas	igiannguit Hel	Qasigiannguit Greenland	JCH BGCH	68.822815547	-51.1734473705	70		Εl	America/Godthab airport OurAirports	56
3997	Aasiaat Airport	Aasiaat Greenland	JEG BGAA	68.7218017578	-52.7846984863	74			America/Godthab airport OurAirports	5
E/38[A11	uiteun Paa Wel	Alluiteum PaalGmaanlandl	LIHIRGARI	49.444E1	-45 540171	E41	-31	E1	Amenica/GodthahlainnontlOunAinnontel	54

Figure 10.11: Output for list of Airports operating in the country X

10.12 Find the list of Airlines having X stops

spark.sql("select * from routes where stops > 0").show(100)

+								+	+
air	line ai	rlineid sourd	eairport sourc	eairportid destina	tionairport destinat	ionairportid code	share st	ops eui	oment
+	+						+	+	+
ı	5T	1623	YRT	132	YEK	50	na	1	ATR
	AC	330	ABJ	253	BRU	302	na	1	333
	AC	330	YVR	156	YBL	30	na	1	BEH
ı	CU	1936	FC0	1555	HAV	1909	na	1	767
ı	FL	1316	HOU	3566	SAT	3621	na	1	735
١	FL	1316	MCO	3878	HOU	3566	na	1	73W
	FL	1316	MCO	3878	ORF	3611	na	1	717
	SK	4319	ARN	737	GEV	715	na	1	ATP
	WN	4547	BOS	3448	MCO	3878	na	1	73W
	WN	4547	MCO	3878	BOS	3448	na	1	73W
1	WN	4547	MCO	3878	CAK	4112	na	1 730	73W

Figure 10.12: Output for the list of Airlines having X stops

10.13 List of Airlines operating with code share

spark.sql("select *, count(*) over() as count from routes where codeshare != 'na' ").show(100)

Output:

+							+	+-	
air	line ai	rlineid sour	ceairport source	eairportid destina	tionairport destinat	ionairportid codes	share st	ops	euipment count
+							+	+-	
1	2P	897	GES	2402	MNL	2397	ΥĮ	0	320 14597
1	2P	897	MNL	2397	GES	2402	ΥĮ	0	320 14597
1	4M	3201	DFW	3670	EZE	3988	ΥĮ	0	777 14597
1	4M	3201	EZE	3988	DFW	3670	ΥĮ	0	777 14597
1	4M	3201	EZE	3988	JFK	3797	Υļ	0	777 14597
1	4M	3201	JFK	3797	EZE	3988	Υļ	0	777 14597
1	5N	503	ARH	4362	CSH	6110	ΥĮ	0	AN4 14597
1	5N	503	ARH	4362	MMK	2949	ΥĮ	0	AN4 14597
1	5N	503	ARH	4362	USK	4369	ΥĮ	0	AN4 14597
1	5N	503	CSH	6110	ARH	4362	Υļ	0	AN4 14597
1	5N	503	MMK	2949	ARH	4362	Υļ	0	AN4 14597

Figure 10.13: Output for Airlines operating with code share

10.14 Find the list of Active Airlines in the United States

spark.sql("select *, count(*) over() as count from airlines where country = 'United States' and active = 'Y'').show(100)

+	+-		+-	+	+-	+	+-	+-	+
airl:	ineid	name	alias i	iata :	icao	callsign	country a	ctive c	ount
+	+-		+-				+-		+
l l	10	40-Mile Air	na	Q5	MLA	MILE-AIR United	States	ΥĮ	156
l l	22	Aloha Airlines	na	AQ	AAH	ALOHA United	States	ΥĮ	156
l l	24	American Airlines	na	AA	AAL	AMERICAN United	States	ΥĮ	156
l	35	Allegiant Air	na	G4	AAY	ALLEGIANT United	States	ΥĮ	156
l	109 A	laska Central Ex	na	К0	AER	ACE AIR United	States	ΥĮ	156
	149	Air Cargo Carriers	na	2Q	SNC	NIGHT CARGO United	States	ΥĮ	156
l	210 A:	irlift Internati	na	na	AIR	AIRLIFT United	States	ΥĮ	156
	281 A	merica West Airl	na	HP	AWE	CACTUS United	States	ΥĮ	156
	282	Air Wisconsin	na	ZW	AWI	AIR WISCONSIN United	States	ΥĮ	156
	287 A	llegheny Commute	na	na	ALO	ALLEGHENY United	States	ΥĮ	156
	295	Air Sunshine	na	na	RSI	AIR SUNSHINE United	States	ΥĮ	156

Figure 10.14: Output for list of active airlines in the United States

10.15 Which country (or) territory has the highest number of Airports

spark.sql("select count(*) as cnt, country from airports group by country order by cnt desc").show(20)

Output:

Figure 10.15: Output for multiple countries having highest number of Airports

10.16 The top K cities with most incoming Airlines

spark.sql("""select * from (select airports.airportid, airports.name, airports.city,airports.country, tb2.incoming_flight_count from airports inner join (select count (*) as incoming_flight_count, destinationairportid from routesgroup by destinationairportid) tb2 on airports.airportid = tb2.destinationairportid) otb order by otb.incoming_flight_count desc""").show(100)

airportid	name		country incom:	ing_flight_count
3682 Hartsfie	eld Jackso	Atlanta	United States	911
3830 Chicago	0'Hare In	Chicago	United States	550
3364 Beijing	Capital I	Beijing	China	534
507 London	Heathrow A	London	United Kingdom	524
1382 Charles	de Gaulle	Paris	Francel	517
3484 Los Ange	eles Inter	Los Angeles	United States	498
340 Frankfur	rt am Main	Frankfurt	Germany	493
3670 Dallas F	Fort Worth Dal	las-Fort Worth	United States	467
3797 John F	Kennedy In	New York	United States	455
580 Amsterda	am Airport	Amsterdam	Netherlands	450
3406 Shangha	i Pudong I	Shanghai	Chinal	414
3316 Singapor	re Changi	Singapore	Singaporel	412
1218 Barcelor	na Interna	Barcelonal	Spain	392
3751 Denver	Internatio	Denver	United States	374
3930 Incheon	Internati	Seoul	South Koreal	370
3576 Miami Ir	nternation	Miami	United States	366
1701 Atatürk	Internati	Istanbul	Turkey	361
7/41 W	unich Minnontl	Munichl	Connecul	7401

Figure 10.16: Output for top K cities with most incoming Airlines

10.17 The top K cities with most outgoing Airlines

spark.sql("""select * from (select airports.airportid, airports.name, airports.city,airports.country, tb2.outgoing_flight_count from airports inner join (select count (*) as outgoing_flight_count, sourceairportid from routes groupby sourceairportid) tb2 on airports.airportid = tb2.sourceairportid) otb order by otb.outgoing_flight_count desc""").show(100)

Output:

+	+	+		+
airp	ortid name	city	country outgoin	g_flight_count
+		+		
	3682 Hartsfield Jackso	Atlanta	United States	915
	3830 Chicago O'Hare In	Chicago	United States	558
	3364 Beijing Capital I	Beijing	China	535
	507 London Heathrow A	London	United Kingdom	527
	1382 Charles de Gaulle	Paris	France	524
	340 Frankfurt am Main	Frankfurt	Germany	497
	3484 Los Angeles Inter	Los Angeles	United States	492
	3670 Dallas Fort Worth Da	llas-Fort Worth	United States	469
	3797 John F Kennedy In	New York	United States	456
	580 Amsterdam Airport	Amsterdam	Netherlands	453
	3406 Shanghai Pudong I	Shanghai	Chinal	411
	3316 Singapore Changi	Singapore	Singapore	408
	1218 Barcelona Interna	Barcelona	Spain	391

Figure 10.17: Output for top K cities with most outgoing Airlines

10.18 Trip that connects two cities X and Y

spark.sql("""select * from routes where sourceairportid = '2613' and destinationairportid='2531' """).show(100)

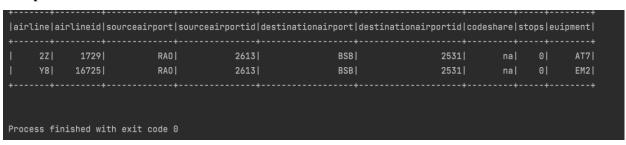


Figure 10.18: Output for trip that connects two cities X and Y

10.19 Trip that connects X and Y with less than Z stops

spark.sql("""select * from routes where sourceairportid = '2613' and destinationairportid='2531' and stops < 1 """).show(100)

Output:

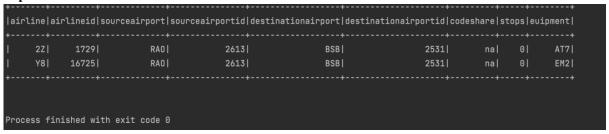


Figure 10.19: Output for trip that connects X and Y with less than Z stops

10.20 All the cities reachable within d hops of a city

spark.sql("""select destinationairport from routes where stops = 1 """).show(100)

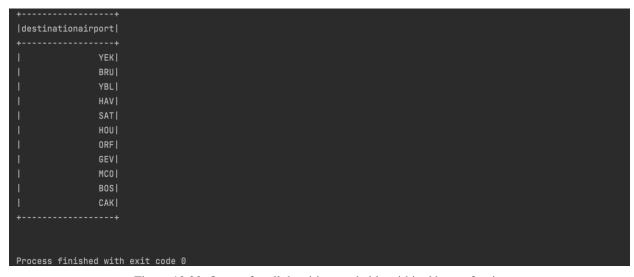


Figure 10.20: Output for all the cities reachable within d hops of a city

11 AWS Output Screenshot

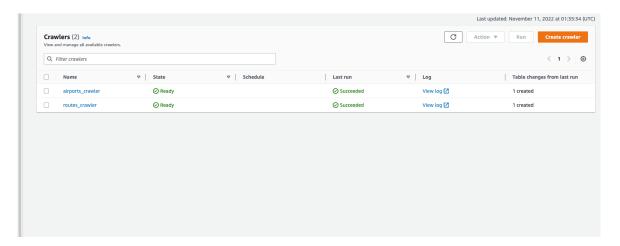


Figure 30: AWS Crawlers page

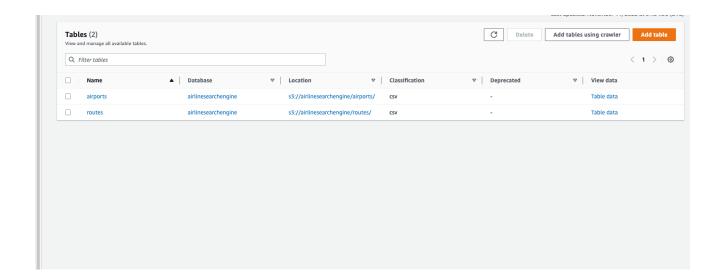


Figure 31: AWS Tables

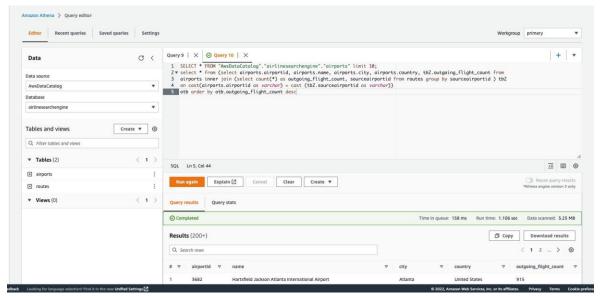


Figure 32: AWS Athena Query

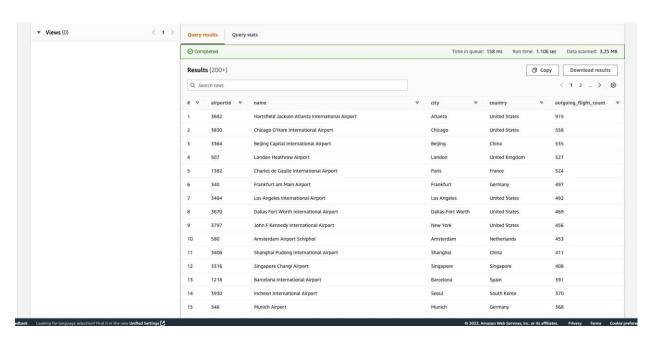


Figure 33: AWS Athena Output

12 Acknowledgement

I would like to thank my major professor, Liu Yunchuan, for having faith in me and my talents and for continuing to believe that I would be able to complete the project on schedule. This Project was completed successfully thanks to the support, ongoing direction, and insightful feedback. I also want to express my sincere gratitude to my mentor for being on my panel, working as my academic advisor, helping me make all the important choices, and having faith in me.

13 References:

- [1] http://openflights.org/data.html.
- [2] https://docs.aws.amazon.com/glue/latest/ug/tutorial-create-job.html
- [3] https://spoddutur.github.io/spark-notes/spark-as-cloud-based-sql-engine-via-thrift-server.html
- [4] https://docs.aws.amazon.com/s3/index.html
- [5] https://www.iata.org/en/publications/directories/code-search/
- [6] https://www.youtube.com/watch?v=8VOf1PUFE0I
- [7] https://docs.aws.amazon.com/iam/index.html
- [8] https://www.jetbrains.com/pycharm/learn/
- [9] https://docs.python.org/3/library/index.html
- [10] https://pandas.pydata.org/docs/
- [11] https://spark.apache.org/docs/latest/api/python/index.html