
Soil Quality and r – K fungal Communities in Plantations after Conversion from Subtropical Forest
Files
Academic Unit
College of Arts and Sciences
Publication Date
12-2022
Document Type
Article
Abstract
Intensive clear-cutting of natural forests and conversion to monoculture plantations are ongoing worldwide, leading to the degradation of soil quality and microbial functions. Here, we compared soil quality index (SQI) and fungal communities in a natural forest (Forest) and four 5-year-old monoculture plantations, including Camellia oleifera (Oil), Amygdalus persica (Peach), Myrica rubra (Berry) and Cunninghamia lanceolate (Fir) in a subtropical region of China. After conversion, soil pH in the plantations rose up to 0.31, but organic carbon and total nitrogen contents, sucrase, acid protease, glutaminase, acid and alkaline phosphatase activities decreased by 83%, 59%, 40%, 64%, 66%, 94% and 59%, respectively. Correspondingly, the SQI dropped by 65%. High-throughput sequencing of the ITS1 region demonstrated an increase in α-diversity and a striking difference in β-diversity of fungi following conversion. Changes in the dominant fungal taxa following forest conversion to plantations were interpreted by r- and K-selection of life strategies. Conversion increased the fungal groups with r-strategies, such as Ascomycota and Zygomycota, but decreased the fungal groups with K-strategies, such as Basidiomycota. Genera affiliated to those phyla including Pseudophialophora, Rhytisma increased, but Russula decreased. Redundancy analysis and structural equation modeling indicated that the diversity and composition of fungal communities changed with soil degradation, which was mainly driven by increased pH and total phosphorus content, but decreased C/N ratio and C and N related enzymes activities. Overall, the conversion of forest to monoculture plantations decreased soil quality and the abundance of K-strategists, retarded the decomposition of persistent organic matter, but boosted the prevalence of r-strategists in a more diverse fungal community.
Journal Title
Catena
Volume
219
DOI
https://doi.org/10.1016/j.catena.2022.106584
Recommended Citation
Lu, Ting; Wu, Xiaohong; Li, Huangwei; Ning, Chen; Li, Yong; Zhang, Xuyuan; He, Jinsong; Filimonenko, Ekaterina; Chen, Shu; Chen, Xiaoyong; Gibson, David J.; Kuzyakov, Yakov; and Yan, Wende, "Soil Quality and r – K fungal Communities in Plantations after Conversion from Subtropical Forest" (2022). Faculty Authors and Creators Reception. 152.
https://opus.govst.edu/fac/152
